Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1997 Dec 1;100(11):2737–2743. doi: 10.1172/JCI119819

Effects of subcutaneous interleukin-2 therapy on CD4 subsets and in vitro cytokine production in HIV+ subjects.

P De Paoli 1, S Zanussi 1, C Simonelli 1, M T Bortolin 1, M D'Andrea 1, C Crepaldi 1, R Talamini 1, M Comar 1, M Giacca 1, U Tirelli 1
PMCID: PMC508477  PMID: 9389737

Abstract

HIV infection is characterized by the reduction of the CD4+, CD45RA+, CD26+, and CD28+ lymphocyte subsets and of the in vitro production of IL-2, IL-4, and interferon-gamma; on the contrary, chemokine production is usually increased. These abnormalities are only partially restored by antiretroviral chemotherapy. Therapy with interleukin-2 has been proposed to restore the functions of the immune system, but the mechanisms by which IL-2 exerts its activities are unknown. The aim of this study was to define the effects of rIL-2 administration on CD4+, CD45RA+, CD45R0+, and CD26+ lymphocytes and on the in vitro production of IL-2, IL-4, IL-10, IFN-gamma, RANTES, and sCD30 in HIV+ patients. 10 HIV+ patients with CD4 cell counts between 200 and 500 cells/mm3 were treated with six cycles of subcutaneous recombinant IL-2 administration, in combination with zidovudine and didanosine. This therapeutic regimen resulted in a remarkable increase in the number of CD4+ cells and in the prolonged reduction of the levels of viremia. CD45R01 cells were expanded during the first cycle of therapy, while CD45RA+/CD26+ cells predominated after the third cycle. At this time, the in vitro production of IL-2, IL-4, IFN-gamma, and sCD30 were significantly upregulated. These results demonstrate that rIL-2 in HIV+ patients induces the reconstitution of the CD4/CD45RA lymphocytes subtype. This expanded cell population recovered the ability to produce in vitro IL-2, IL-4, and IFN-gamma. These effects may be beneficial to HIV+ patients by improving their immune response to microorganisms or vaccines.

Full Text

The Full Text of this article is available as a PDF (196.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adachi Y., Oyaizu N., Than S., McCloskey T. W., Pahwa S. IL-2 rescues in vitro lymphocyte apoptosis in patients with HIV infection: correlation with its ability to block culture-induced down-modulation of Bcl-2. J Immunol. 1996 Nov 1;157(9):4184–4193. [PubMed] [Google Scholar]
  2. Bell E. B., Sparshott S. M. Interconversion of CD45R subsets of CD4 T cells in vivo. Nature. 1990 Nov 8;348(6297):163–166. doi: 10.1038/348163a0. [DOI] [PubMed] [Google Scholar]
  3. Ben-Sasson S. Z., Le Gros G., Conrad D. H., Finkelman F. D., Paul W. E. IL-4 production by T cells from naive donors. IL-2 is required for IL-4 production. J Immunol. 1990 Aug 15;145(4):1127–1136. [PubMed] [Google Scholar]
  4. Benito J. M., Zabay J. M., Gil J., Bermejo M., Escudero A., Sánchez E., Fernández-Cruz E. Quantitative alterations of the functionally distinct subsets of CD4 and CD8 T lymphocytes in asymptomatic HIV infection: changes in the expression of CD45RO, CD45RA, CD11b, CD38, HLA-DR, and CD25 antigens. J Acquir Immune Defic Syndr Hum Retrovirol. 1997 Feb 1;14(2):128–135. doi: 10.1097/00042560-199702010-00005. [DOI] [PubMed] [Google Scholar]
  5. Clerici M., Balotta C., Salvaggio A., Riva C., Trabattoni D., Papagno L., Berlusconi A., Rusconi S., Villa M. L., Moroni M. Human immunodeficiency virus (HIV) phenotype and interleukin-2/ interleukin-10 ratio are associated markers of protection and progression in HIV infection. Blood. 1996 Jul 15;88(2):574–579. [PubMed] [Google Scholar]
  6. Clerici M., Roilides E., Butler K. M., DePalma L., Venzon D., Shearer G. M., Pizzo P. A. Changes in T-helper cell function in human immunodeficiency virus-infected children during didanosine therapy as a measure of antiretroviral activity. Blood. 1992 Nov 1;80(9):2196–2202. [PubMed] [Google Scholar]
  7. Clerici M., Shearer G. M. The Th1-Th2 hypothesis of HIV infection: new insights. Immunol Today. 1994 Dec;15(12):575–581. doi: 10.1016/0167-5699(94)90220-8. [DOI] [PubMed] [Google Scholar]
  8. Cocchi F., DeVico A. L., Garzino-Demo A., Arya S. K., Gallo R. C., Lusso P. Identification of RANTES, MIP-1 alpha, and MIP-1 beta as the major HIV-suppressive factors produced by CD8+ T cells. Science. 1995 Dec 15;270(5243):1811–1815. doi: 10.1126/science.270.5243.1811. [DOI] [PubMed] [Google Scholar]
  9. Comar M., Simonelli C., Zanussi S., Paoli P., Vaccher E., Tirelli U., Giacca M. Dynamics of HIV-1 mRNA expression in patients with long-term nonprogressive HIV-1 infection. J Clin Invest. 1997 Aug 15;100(4):893–903. doi: 10.1172/JCI119605. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Connors M., Kovacs J. A., Krevat S., Gea-Banacloche J. C., Sneller M. C., Flanigan M., Metcalf J. A., Walker R. E., Falloon J., Baseler M. HIV infection induces changes in CD4+ T-cell phenotype and depletions within the CD4+ T-cell repertoire that are not immediately restored by antiviral or immune-based therapies. Nat Med. 1997 May;3(5):533–540. doi: 10.1038/nm0597-533. [DOI] [PubMed] [Google Scholar]
  11. Cook D. N., Beck M. A., Coffman T. M., Kirby S. L., Sheridan J. F., Pragnell I. B., Smithies O. Requirement of MIP-1 alpha for an inflammatory response to viral infection. Science. 1995 Sep 15;269(5230):1583–1585. doi: 10.1126/science.7667639. [DOI] [PubMed] [Google Scholar]
  12. D'Souza M. P., Harden V. A. Chemokines and HIV-1 second receptors. Confluence of two fields generates optimism in AIDS research. Nat Med. 1996 Dec;2(12):1293–1300. doi: 10.1038/nm1296-1293. [DOI] [PubMed] [Google Scholar]
  13. Davey R. T., Jr, Chaitt D. G., Piscitelli S. C., Wells M., Kovacs J. A., Walker R. E., Falloon J., Polis M. A., Metcalf J. A., Masur H. Subcutaneous administration of interleukin-2 in human immunodeficiency virus type 1-infected persons. J Infect Dis. 1997 Apr;175(4):781–789. doi: 10.1086/513971. [DOI] [PubMed] [Google Scholar]
  14. Fan J., Bass H. Z., Fahey J. L. Elevated IFN-gamma and decreased IL-2 gene expression are associated with HIV infection. J Immunol. 1993 Nov 1;151(9):5031–5040. [PubMed] [Google Scholar]
  15. Helbert M. R., L'age-Stehr J., Mitchison N. A. Antigen presentation, loss of immunological memory and AIDS. Immunol Today. 1993 Jul;14(7):340–344. doi: 10.1016/0167-5699(93)90232-A. [DOI] [PubMed] [Google Scholar]
  16. Hilleman M. R. Vaccinology, immunology, and comparative pathogenesis of measles in the quest for a preventative against AIDS. AIDS Res Hum Retroviruses. 1994 Jan;10(1):3–12. doi: 10.1089/aid.1994.10.3. [DOI] [PubMed] [Google Scholar]
  17. Jacobson E. L., Pilaro F., Smith K. A. Rational interleukin 2 therapy for HIV positive individuals: daily low doses enhance immune function without toxicity. Proc Natl Acad Sci U S A. 1996 Sep 17;93(19):10405–10410. doi: 10.1073/pnas.93.19.10405. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Janossy G., Borthwick N., Lomnitzer R., Medina E., Squire S. B., Phillips A. N., Lipman M., Johnson M. A., Lee C., Bofill M. Lymphocyte activation in HIV-1 infection. I. Predominant proliferative defects among CD45R0+ cells of the CD4 and CD8 lineages. AIDS. 1993 May;7(5):613–624. doi: 10.1097/00002030-199305000-00002. [DOI] [PubMed] [Google Scholar]
  19. Kovacs J. A., Baseler M., Dewar R. J., Vogel S., Davey R. T., Jr, Falloon J., Polis M. A., Walker R. E., Stevens R., Salzman N. P. Increases in CD4 T lymphocytes with intermittent courses of interleukin-2 in patients with human immunodeficiency virus infection. A preliminary study. N Engl J Med. 1995 Mar 2;332(9):567–575. doi: 10.1056/NEJM199503023320904. [DOI] [PubMed] [Google Scholar]
  20. Kovacs J. A., Vogel S., Albert J. M., Falloon J., Davey R. T., Jr, Walker R. E., Polis M. A., Spooner K., Metcalf J. A., Baseler M. Controlled trial of interleukin-2 infusions in patients infected with the human immunodeficiency virus. N Engl J Med. 1996 Oct 31;335(18):1350–1356. doi: 10.1056/NEJM199610313351803. [DOI] [PubMed] [Google Scholar]
  21. Loetscher P., Seitz M., Baggiolini M., Moser B. Interleukin-2 regulates CC chemokine receptor expression and chemotactic responsiveness in T lymphocytes. J Exp Med. 1996 Aug 1;184(2):569–577. doi: 10.1084/jem.184.2.569. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Meyaard L., Otto S. A., Hooibrink B., Miedema F. Quantitative analysis of CD4+ T cell function in the course of human immunodeficiency virus infection. Gradual decline of both naive and memory alloreactive T cells. J Clin Invest. 1994 Nov;94(5):1947–1952. doi: 10.1172/JCI117545. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Moore J. P. Coreceptors: implications for HIV pathogenesis and therapy. Science. 1997 Apr 4;276(5309):51–52. doi: 10.1126/science.276.5309.51. [DOI] [PubMed] [Google Scholar]
  24. Mosmann T. R., Sad S. The expanding universe of T-cell subsets: Th1, Th2 and more. Immunol Today. 1996 Mar;17(3):138–146. doi: 10.1016/0167-5699(96)80606-2. [DOI] [PubMed] [Google Scholar]
  25. Paxton W. A., Martin S. R., Tse D., O'Brien T. R., Skurnick J., VanDevanter N. L., Padian N., Braun J. F., Kotler D. P., Wolinsky S. M. Relative resistance to HIV-1 infection of CD4 lymphocytes from persons who remain uninfected despite multiple high-risk sexual exposure. Nat Med. 1996 Apr;2(4):412–417. doi: 10.1038/nm0496-412. [DOI] [PubMed] [Google Scholar]
  26. Pizzolo G., Vinante F., Morosato L., Nadali G., Chilosi M., Gandini G., Sinicco A., Raiteri R., Semenzato G., Stein H. High serum level of the soluble form of CD30 molecule in the early phase of HIV-1 infection as an independent predictor of progression to AIDS. AIDS. 1994 Jun;8(6):741–745. doi: 10.1097/00002030-199406000-00003. [DOI] [PubMed] [Google Scholar]
  27. Premack B. A., Schall T. J. Chemokine receptors: gateways to inflammation and infection. Nat Med. 1996 Nov;2(11):1174–1178. doi: 10.1038/nm1196-1174. [DOI] [PubMed] [Google Scholar]
  28. Romagnani S. Th1 and Th2 in human diseases. Clin Immunol Immunopathol. 1996 Sep;80(3 Pt 1):225–235. doi: 10.1006/clin.1996.0118. [DOI] [PubMed] [Google Scholar]
  29. Rosenberg Z. F., Fauci A. S. Immunopathogenic mechanisms of HIV infection: cytokine induction of HIV expression. Immunol Today. 1990 May;11(5):176–180. doi: 10.1016/0167-5699(90)90070-p. [DOI] [PubMed] [Google Scholar]
  30. Roth M. D. Interleukin 2 induces the expression of CD45RO and the memory phenotype by CD45RA+ peripheral blood lymphocytes. J Exp Med. 1994 Mar 1;179(3):857–864. doi: 10.1084/jem.179.3.857. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Sakito S., Ueki Y., Eguchi K., Kawabe Y., Nagataki S. Serum cytokines in patients with rheumatoid arthritis. Correlation of interferon gamma and tumor necrosis factor alpha with the characteristics of peripheral blood mononuclear cells. Rheumatol Int. 1995;15(1):31–37. doi: 10.1007/BF00286766. [DOI] [PubMed] [Google Scholar]
  32. Schaafsma M. R., Falkenburg J. H., Landegent J. E., Duinkerken N., Osanto S., Ralph P., Kaushansky K., Wagemaker G., Van Damme J., Willemze R. In vivo production of interleukin-5, granulocyte-macrophage colony-stimulating factor, macrophages colony-stimulating factor, and interleukin-6 during intravenous administration of high-dose interleukin-2 in cancer patients. Blood. 1991 Oct 15;78(8):1981–1987. [PubMed] [Google Scholar]
  33. Scheel-Toellner D., Richter E., Toellner K. M., Reiling N., Wacker H. H., Flad H. D., Gerdes J. CD26 expression in leprosy and other granulomatous diseases correlates with the production of interferon-gamma. Lab Invest. 1995 Nov;73(5):685–690. [PubMed] [Google Scholar]
  34. Teppler H., Kaplan G., Smith K. A., Montana A. L., Meyn P., Cohn Z. A. Prolonged immunostimulatory effect of low-dose polyethylene glycol interleukin 2 in patients with human immunodeficiency virus type 1 infection. J Exp Med. 1993 Feb 1;177(2):483–492. doi: 10.1084/jem.177.2.483. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Urba W. J., Steis R. G., Longo D. L., Kopp W. C., Maluish A. E., Marcon L., Nelson D. L., Stevenson H. C., Clark J. W. Immunomodulatory properties and toxicity of interleukin 2 in patients with cancer. Cancer Res. 1990 Jan 1;50(1):185–192. [PubMed] [Google Scholar]
  36. Vanham G., Kestens L., De Meester I., Vingerhoets J., Penne G., Vanhoof G., Scharpé S., Heyligen H., Bosmans E., Ceuppens J. L. Decreased expression of the memory marker CD26 on both CD4+ and CD8+ T lymphocytes of HIV-infected subjects. J Acquir Immune Defic Syndr. 1993 Jul;6(7):749–757. [PubMed] [Google Scholar]
  37. Weng N. P., Levine B. L., June C. H., Hodes R. J. Human naive and memory T lymphocytes differ in telomeric length and replicative potential. Proc Natl Acad Sci U S A. 1995 Nov 21;92(24):11091–11094. doi: 10.1073/pnas.92.24.11091. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Woods T. C., Roberts B. D., Butera S. T., Folks T. M. Loss of inducible virus in CD45RA naive cells after human immunodeficiency virus-1 entry accounts for preferential viral replication in CD45RO memory cells. Blood. 1997 Mar 1;89(5):1635–1641. [PubMed] [Google Scholar]
  39. Wu L., Paxton W. A., Kassam N., Ruffing N., Rottman J. B., Sullivan N., Choe H., Sodroski J., Newman W., Koup R. A. CCR5 levels and expression pattern correlate with infectability by macrophage-tropic HIV-1, in vitro. J Exp Med. 1997 May 5;185(9):1681–1691. doi: 10.1084/jem.185.9.1681. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Zanussi S., Simonelli C., D'Andrea M., Caffau C., Clerici M., Tirelli U., DePaoli P. CD8+ lymphocyte phenotype and cytokine production in long-term non-progressor and in progressor patients with HIV-1 infection. Clin Exp Immunol. 1996 Aug;105(2):220–224. doi: 10.1046/j.1365-2249.1996.d01-746.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Zanussi S., Simonelli C., D'Andrea M., Comar M., Bidoli E., Giacca M., Tirelli U., Vaccher E., De Paoli P. The effects of antineoplastic chemotherapy on HIV disease. AIDS Res Hum Retroviruses. 1996 Dec 10;12(18):1703–1707. doi: 10.1089/aid.1996.12.1703. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES