Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1997 Dec 1;100(11):2766–2776. doi: 10.1172/JCI119823

Therapeutic effects of interleukin-4 gene transfer in experimental inflammatory bowel disease.

C M Hogaboam 1, B A Vallance 1, A Kumar 1, C L Addison 1, F L Graham 1, J Gauldie 1, S M Collins 1
PMCID: PMC508481  PMID: 9389741

Abstract

Inflammatory bowel disease (IBD) is characterized by altered immunoregulation and augmented intestinal synthesis of nitric oxide. The purpose of this study was to determine the effects of exogenous IL-4, introduced by a recombinant human type 5 adenovirus (Ad5) vector, on the tissue injury associated with an experimental model of colonic immune activation and inflammation. Colitis was induced in rats by the intrarectal administration of trinitrobenzene sulfonic acid (TNB) dissolved in 50% ethanol, and control rats received saline via the same route. 1 h later, all rats were randomized into two groups. The first group was injected intraperitoneally (ip) with 3.0 x 10(6) plaque forming units (PFUs) of Ad5 transfected with murine interleukin-4 (Ad5IL-4) and the second group was injected ip with the same amount of Ad5 expressing the Escherichia coli Lac Z gene (Ad5LacZ). One-half of the colitic and control rats were injected again with 3.0 x 10(6) PFUs of Ad5IL-4 or Ad5LacZ on day 3 of the 6-d study. When introduced once or twice via the peritoneal route into control rats, Ad5LacZ was localized to the serosal lining of the peritoneal cavity, the diaphragm and the liver on day 6. One or two injections of Ad5IL-4 into rats also produced measurable levels of circulating IL-4. TNB-colitis in both Ad5LacZ-treated groups was associated with pronounced elevations in serum IFN-gamma, and mucosal ulceration of the distal colon. Myeloperoxidase and inducible nitric oxide synthase II (NOS II) synthetic activity were also increased by 30- and fivefold, respectively, above control levels in the distal colon. However, two injections of Ad5IL-4 into colitic rats caused the overexpression of IL-4, and significantly inhibited tissue damage, serum and colon IFN-gamma levels and myeloperoxidase activity in the distal colon. In addition, NOS II gene expression and NOS II nitric oxide synthesis was significantly inhibited. No therapeutic effect was observed in rats injected once with Ad5IL-4. Thus, IL-4, introduced by Ad5, is therapeutic during acute inflammation in the rat colon. The therapeutic effect of IL-4 was associated with an inhibition of inducible nitric oxide expression and a reduction in nitric oxide synthesis.

Full Text

The Full Text of this article is available as a PDF (741.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Addison C. L., Braciak T., Ralston R., Muller W. J., Gauldie J., Graham F. L. Intratumoral injection of an adenovirus expressing interleukin 2 induces regression and immunity in a murine breast cancer model. Proc Natl Acad Sci U S A. 1995 Aug 29;92(18):8522–8526. doi: 10.1073/pnas.92.18.8522. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Aiko S., Grisham M. B. Spontaneous intestinal inflammation and nitric oxide metabolism in HLA-B27 transgenic rats. Gastroenterology. 1995 Jul;109(1):142–150. doi: 10.1016/0016-5085(95)90279-1. [DOI] [PubMed] [Google Scholar]
  3. Alican I., Kubes P. A critical role for nitric oxide in intestinal barrier function and dysfunction. Am J Physiol. 1996 Feb;270(2 Pt 1):G225–G237. doi: 10.1152/ajpgi.1996.270.2.G225. [DOI] [PubMed] [Google Scholar]
  4. Aramaki Y., Nitta F., Matsuno R., Morimura Y., Tsuchiya S. Inhibitory effects of negatively charged liposomes on nitric oxide production from macrophages stimulated by LPS. Biochem Biophys Res Commun. 1996 Mar 7;220(1):1–6. doi: 10.1006/bbrc.1996.0346. [DOI] [PubMed] [Google Scholar]
  5. Bauditz J., Rückert Y., Raedler A., Nikolaus S., Lochs H., Schreiber S. Tumour necrosis factor inhibition by oxpentifylline and intestinal inflammation in Crohn's disease. Lancet. 1995 Jun 3;345(8962):1445–1445. doi: 10.1016/s0140-6736(95)92635-6. [DOI] [PubMed] [Google Scholar]
  6. Boughton-Smith N. K. Pathological and therapeutic implications for nitric oxide in inflammatory bowel disease. J R Soc Med. 1994 Jun;87(6):312–314. doi: 10.1177/014107689408700602. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Braciak T. A., Mittal S. K., Graham F. L., Richards C. D., Gauldie J. Construction of recombinant human type 5 adenoviruses expressing rodent IL-6 genes. An approach to investigate in vivo cytokine function. J Immunol. 1993 Nov 15;151(10):5145–5153. [PubMed] [Google Scholar]
  8. Cayeux S., Beck C., Dörken B., Blankenstein T. Coexpression of interleukin-4 and B7.1 in murine tumor cells leads to improved tumor rejection and vaccine effect compared to single gene transfectants and a classical adjuvant. Hum Gene Ther. 1996 Mar 1;7(4):525–529. doi: 10.1089/hum.1996.7.4-525. [DOI] [PubMed] [Google Scholar]
  9. Choi P. M., Targan S. R. Immunomodulator therapy in inflammatory bowel disease. Dig Dis Sci. 1994 Sep;39(9):1885–1892. doi: 10.1007/BF02088121. [DOI] [PubMed] [Google Scholar]
  10. Cohen M. C., Cohen S. Cytokine function: a study in biologic diversity. Am J Clin Pathol. 1996 May;105(5):589–598. doi: 10.1093/ajcp/105.5.589. [DOI] [PubMed] [Google Scholar]
  11. Derkx B., Taminiau J., Radema S., Stronkhorst A., Wortel C., Tytgat G., van Deventer S. Tumour-necrosis-factor antibody treatment in Crohn's disease. Lancet. 1993 Jul 17;342(8864):173–174. doi: 10.1016/0140-6736(93)91375-v. [DOI] [PubMed] [Google Scholar]
  12. Elson C. O., Sartor R. B., Tennyson G. S., Riddell R. H. Experimental models of inflammatory bowel disease. Gastroenterology. 1995 Oct;109(4):1344–1367. doi: 10.1016/0016-5085(95)90599-5. [DOI] [PubMed] [Google Scholar]
  13. Fiorentino D. F., Bond M. W., Mosmann T. R. Two types of mouse T helper cell. IV. Th2 clones secrete a factor that inhibits cytokine production by Th1 clones. J Exp Med. 1989 Dec 1;170(6):2081–2095. doi: 10.1084/jem.170.6.2081. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Forough R., Hasenstab D., Koyama N., Lea H., Clowes M., Clowes A. W. Generating antibodies against secreted proteins using vascular smooth muscle cells transduced with replication-defective retrovirus. Biotechniques. 1996 Apr;20(4):694–701. doi: 10.2144/19962004694. [DOI] [PubMed] [Google Scholar]
  15. Gautam S. C., Chikkala N. F., Hamilton T. A. Anti-inflammatory action of IL-4. Negative regulation of contact sensitivity to trinitrochlorobenzene. J Immunol. 1992 Mar 1;148(5):1411–1415. [PubMed] [Google Scholar]
  16. Grisham M. B., Specian R. D., Zimmerman T. E. Effects of nitric oxide synthase inhibition on the pathophysiology observed in a model of chronic granulomatous colitis. J Pharmacol Exp Ther. 1994 Nov;271(2):1114–1121. [PubMed] [Google Scholar]
  17. Hogaboam C. M., Jacobson K., Collins S. M., Blennerhassett M. G. The selective beneficial effects of nitric oxide inhibition in experimental colitis. Am J Physiol. 1995 Apr;268(4 Pt 1):G673–G684. doi: 10.1152/ajpgi.1995.268.4.G673. [DOI] [PubMed] [Google Scholar]
  18. Huard J., Lochmüller H., Acsadi G., Jani A., Massie B., Karpati G. The route of administration is a major determinant of the transduction efficiency of rat tissues by adenoviral recombinants. Gene Ther. 1995 Mar;2(2):107–115. [PubMed] [Google Scholar]
  19. Juillard V., Villefroy P., Godfrin D., Pavirani A., Venet A., Guillet J. G. Long-term humoral and cellular immunity induced by a single immunization with replication-defective adenovirus recombinant vector. Eur J Immunol. 1995 Dec;25(12):3467–3473. doi: 10.1002/eji.1830251239. [DOI] [PubMed] [Google Scholar]
  20. Karges W. J., Gaedigk R., Dosch H. M. Quantitative analysis of gene expression in different tissues by template-calibrated RT-PCR and laser-induced fluorescence. PCR Methods Appl. 1994 Dec;4(3):154–159. doi: 10.1101/gr.4.3.154. [DOI] [PubMed] [Google Scholar]
  21. Khan I., Collins S. M. Expression of cytokines in the longitudinal muscle myenteric plexus of the inflamed intestine of rat. Gastroenterology. 1994 Sep;107(3):691–700. doi: 10.1016/0016-5085(94)90116-3. [DOI] [PubMed] [Google Scholar]
  22. Kucharzik T., Lügering N., Weigelt H., Adolf M., Domschke W., Stoll R. Immunoregulatory properties of IL-13 in patients with inflammatory bowel disease; comparison with IL-4 and IL-10. Clin Exp Immunol. 1996 Jun;104(3):483–490. doi: 10.1046/j.1365-2249.1996.39750.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Kusugami K., Fukatsu A., Tanimoto M., Shinoda M., Haruta J., Kuroiwa A., Ina K., Kanayama K., Ando T., Matsuura T. Elevation of interleukin-6 in inflammatory bowel disease is macrophage- and epithelial cell-dependent. Dig Dis Sci. 1995 May;40(5):949–959. doi: 10.1007/BF02064182. [DOI] [PubMed] [Google Scholar]
  24. Kusugami K., Matsuura T., West G. A., Youngman K. R., Rachmilewitz D., Fiocchi C. Loss of interleukin-2-producing intestinal CD4+ T cells in inflammatory bowel disease. Gastroenterology. 1991 Dec;101(6):1594–1605. doi: 10.1016/0016-5085(91)90397-4. [DOI] [PubMed] [Google Scholar]
  25. Kühn R., Löhler J., Rennick D., Rajewsky K., Müller W. Interleukin-10-deficient mice develop chronic enterocolitis. Cell. 1993 Oct 22;75(2):263–274. doi: 10.1016/0092-8674(93)80068-p. [DOI] [PubMed] [Google Scholar]
  26. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  27. Leach M. W., Bean A. G., Mauze S., Coffman R. L., Powrie F. Inflammatory bowel disease in C.B-17 scid mice reconstituted with the CD45RBhigh subset of CD4+ T cells. Am J Pathol. 1996 May;148(5):1503–1515. [PMC free article] [PubMed] [Google Scholar]
  28. Miller M. J., Sadowska-Krowicka H., Chotinaruemol S., Kakkis J. L., Clark D. A. Amelioration of chronic ileitis by nitric oxide synthase inhibition. J Pharmacol Exp Ther. 1993 Jan;264(1):11–16. [PubMed] [Google Scholar]
  29. Miller M. J., Thompson J. H., Zhang X. J., Sadowska-Krowicka H., Kakkis J. L., Munshi U. K., Sandoval M., Rossi J. L., Eloby-Childress S., Beckman J. S. Role of inducible nitric oxide synthase expression and peroxynitrite formation in guinea pig ileitis. Gastroenterology. 1995 Nov;109(5):1475–1483. doi: 10.1016/0016-5085(95)90633-9. [DOI] [PubMed] [Google Scholar]
  30. Missol E., Sochanik A., Szala S. Introduction of murine Il-4 gene into B16(F10) melanoma tumors by direct gene transfer with DNA-liposome complexes. Cancer Lett. 1995 Nov 6;97(2):189–193. doi: 10.1016/0304-3835(95)03961-u. [DOI] [PubMed] [Google Scholar]
  31. Mizoguchi A., Mizoguchi E., Chiba C., Spiekermann G. M., Tonegawa S., Nagler-Anderson C., Bhan A. K. Cytokine imbalance and autoantibody production in T cell receptor-alpha mutant mice with inflammatory bowel disease. J Exp Med. 1996 Mar 1;183(3):847–856. doi: 10.1084/jem.183.3.847. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Mombaerts P., Mizoguchi E., Grusby M. J., Glimcher L. H., Bhan A. K., Tonegawa S. Spontaneous development of inflammatory bowel disease in T cell receptor mutant mice. Cell. 1993 Oct 22;75(2):274–282. doi: 10.1016/0092-8674(93)80069-q. [DOI] [PubMed] [Google Scholar]
  33. Moncada S. The L-arginine: nitric oxide pathway, cellular transduction and immunological roles. Adv Second Messenger Phosphoprotein Res. 1993;28:97–99. [PubMed] [Google Scholar]
  34. Morga E., Heuschling P. Interleukin-4 down-regulates MHC class II antigens on cultured rat astrocytes. Glia. 1996 Jun;17(2):175–179. doi: 10.1002/(SICI)1098-1136(199606)17:2<175::AID-GLIA9>3.0.CO;2-1. [DOI] [PubMed] [Google Scholar]
  35. Morris G. P., Beck P. L., Herridge M. S., Depew W. T., Szewczuk M. R., Wallace J. L. Hapten-induced model of chronic inflammation and ulceration in the rat colon. Gastroenterology. 1989 Mar;96(3):795–803. [PubMed] [Google Scholar]
  36. Mourelle M., Casellas F., Guarner F., Salas A., Riveros-Moreno V., Moncada S., Malagelada J. R. Induction of nitric oxide synthase in colonic smooth muscle from patients with toxic megacolon. Gastroenterology. 1995 Nov;109(5):1497–1502. doi: 10.1016/0016-5085(95)90636-3. [DOI] [PubMed] [Google Scholar]
  37. Neurath M. F., Fuss I., Kelsall B. L., Stüber E., Strober W. Antibodies to interleukin 12 abrogate established experimental colitis in mice. J Exp Med. 1995 Nov 1;182(5):1281–1290. doi: 10.1084/jem.182.5.1281. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Powrie F., Correa-Oliveira R., Mauze S., Coffman R. L. Regulatory interactions between CD45RBhigh and CD45RBlow CD4+ T cells are important for the balance between protective and pathogenic cell-mediated immunity. J Exp Med. 1994 Feb 1;179(2):589–600. doi: 10.1084/jem.179.2.589. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Rachmilewitz D., Karmeli F., Okon E., Bursztyn M. Experimental colitis is ameliorated by inhibition of nitric oxide synthase activity. Gut. 1995 Aug;37(2):247–255. doi: 10.1136/gut.37.2.247. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Sadlack B., Merz H., Schorle H., Schimpl A., Feller A. C., Horak I. Ulcerative colitis-like disease in mice with a disrupted interleukin-2 gene. Cell. 1993 Oct 22;75(2):253–261. doi: 10.1016/0092-8674(93)80067-o. [DOI] [PubMed] [Google Scholar]
  41. Sands W. A., Bulut V., Severn A., Xu D., Liew F. Y. Inhibition of nitric oxide synthesis by interleukin-4 may involve inhibiting the activation of protein kinase C epsilon. Eur J Immunol. 1994 Oct;24(10):2345–2350. doi: 10.1002/eji.1830241013. [DOI] [PubMed] [Google Scholar]
  42. Schneider M. D., French B. A. The advent of adenovirus. Gene therapy for cardiovascular disease. Circulation. 1993 Oct;88(4 Pt 1):1937–1942. doi: 10.1161/01.cir.88.4.1937. [DOI] [PubMed] [Google Scholar]
  43. Schreiber S., Heinig T., Panzer U., Reinking R., Bouchard A., Stahl P. D., Raedler A. Impaired response of activated mononuclear phagocytes to interleukin 4 in inflammatory bowel disease. Gastroenterology. 1995 Jan;108(1):21–33. doi: 10.1016/0016-5085(95)90004-7. [DOI] [PubMed] [Google Scholar]
  44. Schreiber S., Heinig T., Thiele H. G., Raedler A. Immunoregulatory role of interleukin 10 in patients with inflammatory bowel disease. Gastroenterology. 1995 May;108(5):1434–1444. doi: 10.1016/0016-5085(95)90692-4. [DOI] [PubMed] [Google Scholar]
  45. Snyder S. H. Janus faces of nitric oxide. Nature. 1993 Aug 12;364(6438):577–577. doi: 10.1038/364577a0. [DOI] [PubMed] [Google Scholar]
  46. Strober W., Ehrhardt R. O. Chronic intestinal inflammation: an unexpected outcome in cytokine or T cell receptor mutant mice. Cell. 1993 Oct 22;75(2):203–205. doi: 10.1016/0092-8674(93)80062-j. [DOI] [PubMed] [Google Scholar]
  47. Ulmer J. B., Donnelly J. J., Parker S. E., Rhodes G. H., Felgner P. L., Dwarki V. J., Gromkowski S. H., Deck R. R., DeWitt C. M., Friedman A. Heterologous protection against influenza by injection of DNA encoding a viral protein. Science. 1993 Mar 19;259(5102):1745–1749. doi: 10.1126/science.8456302. [DOI] [PubMed] [Google Scholar]
  48. West G. A., Matsuura T., Levine A. D., Klein J. S., Fiocchi C. Interleukin 4 in inflammatory bowel disease and mucosal immune reactivity. Gastroenterology. 1996 Jun;110(6):1683–1695. doi: 10.1053/gast.1996.v110.pm8964392. [DOI] [PubMed] [Google Scholar]
  49. Xing Z., Braciak T., Jordana M., Croitoru K., Graham F. L., Gauldie J. Adenovirus-mediated cytokine gene transfer at tissue sites. Overexpression of IL-6 induces lymphocytic hyperplasia in the lung. J Immunol. 1994 Nov 1;153(9):4059–4069. [PubMed] [Google Scholar]
  50. van Dullemen H. M., van Deventer S. J., Hommes D. W., Bijl H. A., Jansen J., Tytgat G. N., Woody J. Treatment of Crohn's disease with anti-tumor necrosis factor chimeric monoclonal antibody (cA2). Gastroenterology. 1995 Jul;109(1):129–135. doi: 10.1016/0016-5085(95)90277-5. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES