Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1997 Dec 1;100(11):2816–2823. doi: 10.1172/JCI119829

Possible role of P-450 metabolite of arachidonic acid in vasodilator mechanism of angiotensin II type 2 receptor in the isolated microperfused rabbit afferent arteriole.

S Arima 1, Y Endo 1, H Yaoita 1, K Omata 1, S Ogawa 1, K Tsunoda 1, M Abe 1, K Takeuchi 1, K Abe 1, S Ito 1
PMCID: PMC508487  PMID: 9389747

Abstract

Although angiotensin II type 2 (AT2) receptor has recently been cloned, its functional role is not well understood. We tested the hypothesis that selective activation of AT2 receptor causes vasodilation in the preglomerular afferent arteriole (Af-Art), a vascular segment that accounts for most of the preglomerular resistance. We microperfused rabbit Af-Arts at 60 mmHg in vitro, and examined the effect of angiotensin II (Ang II; 10(-11)-10(-8) M) on the luminal diameter in the presence or absence of the Ang II type 1 receptor antagonist CV11974 (CV; 10(-8) M). Ang II was added to both the bath and lumen of preconstricted Af-Arts. Ang II further constricted Af-Arts without CV (by 74+/-7% over the preconstricted level at 10(-8) M; P < 0.01, n = 7). In contrast, in the presence of CV, Ang II caused dose-dependent dilation; Ang II at 10(-8) M increased the diameter by 29+/-2% (n = 7, P < 0.01). This dilation was completely abolished by pretreatment with an AT2 receptor antagonist PD123319 (10(-7) M, n = 6), suggesting that activation of AT2 receptor causes vasodilation in Af-Arts. The dilation was unaffected by inhibiting either nitric oxide synthase (n = 7) or cyclooxygenase (n = 7), however, it was abolished by either disrupting the endothelium (n = 10) or inhibiting the cytochrome P-450 pathway, particularly the synthesis of epoxyeicosatrienoic acids (EETs, n = 7). These results suggest that in the Af-Art activation of the AT2 receptor may cause endothelium-dependent vasodilation via a cytochrome P-450 pathway, possibly by EETs.

Full Text

The Full Text of this article is available as a PDF (244.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arima S., Ito S., Omata K., Takeuchi K., Abe K. High glucose augments angiotensin II action by inhibiting NO synthesis in in vitro microperfused rabbit afferent arterioles. Kidney Int. 1995 Sep;48(3):683–689. doi: 10.1038/ki.1995.338. [DOI] [PubMed] [Google Scholar]
  2. Arima S., Omata K., Ito S., Tsunoda K., Abe K. 20-HETE requires increased vascular tone to constrict rabbit afferent arterioles. Hypertension. 1996 Mar;27(3 Pt 2):781–785. doi: 10.1161/01.hyp.27.3.781. [DOI] [PubMed] [Google Scholar]
  3. Boulanger C. M., Caputo L., Lévy B. I. Endothelial AT1-mediated release of nitric oxide decreases angiotensin II contractions in rat carotid artery. Hypertension. 1995 Nov;26(5):752–757. doi: 10.1161/01.hyp.26.5.752. [DOI] [PubMed] [Google Scholar]
  4. Brechler V., Jones P. W., Levens N. R., de Gasparo M., Bottari S. P. Agonistic and antagonistic properties of angiotensin analogs at the AT2 receptor in PC12W cells. Regul Pept. 1993 Mar 19;44(2):207–213. doi: 10.1016/0167-0115(93)90244-3. [DOI] [PubMed] [Google Scholar]
  5. Campbell W. B., Gebremedhin D., Pratt P. F., Harder D. R. Identification of epoxyeicosatrienoic acids as endothelium-derived hyperpolarizing factors. Circ Res. 1996 Mar;78(3):415–423. doi: 10.1161/01.res.78.3.415. [DOI] [PubMed] [Google Scholar]
  6. Carroll M. A., Garcia M. P., Falck J. R., McGiff J. C. Cyclooxygenase dependency of the renovascular actions of cytochrome P450-derived arachidonate metabolites. J Pharmacol Exp Ther. 1992 Jan;260(1):104–109. [PubMed] [Google Scholar]
  7. Carroll M. A., Schwartzman M., Baba M., Miller M. J., McGiff J. C. Renal cytochrome P-450-related arachidonate metabolism in rabbit aortic coarctation. Am J Physiol. 1988 Jul;255(1 Pt 2):F151–F157. doi: 10.1152/ajprenal.1988.255.1.F151. [DOI] [PubMed] [Google Scholar]
  8. Chiu A. T., Herblin W. F., McCall D. E., Ardecky R. J., Carini D. J., Duncia J. V., Pease L. J., Wong P. C., Wexler R. R., Johnson A. L. Identification of angiotensin II receptor subtypes. Biochem Biophys Res Commun. 1989 Nov 30;165(1):196–203. doi: 10.1016/0006-291x(89)91054-1. [DOI] [PubMed] [Google Scholar]
  9. Escalante B., Erlij D., Falck J. R., McGiff J. C. Effect of cytochrome P450 arachidonate metabolites on ion transport in rabbit kidney loop of Henle. Science. 1991 Feb 15;251(4995):799–802. doi: 10.1126/science.1846705. [DOI] [PubMed] [Google Scholar]
  10. Fulton D., Mahboubi K., McGiff J. C., Quilley J. Cytochrome P450-dependent effects of bradykinin in the rat heart. Br J Pharmacol. 1995 Jan;114(1):99–102. doi: 10.1111/j.1476-5381.1995.tb14911.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Gebremedhin D., Kaldunski M., Jacobs E. R., Harder D. R., Roman R. J. Coexistence of two types of Ca(2+)-activated K+ channels in rat renal arterioles. Am J Physiol. 1996 Jan;270(1 Pt 2):F69–F81. doi: 10.1152/ajprenal.1996.270.1.F69. [DOI] [PubMed] [Google Scholar]
  12. Gebremedhin D., Ma Y. H., Falck J. R., Roman R. J., VanRollins M., Harder D. R. Mechanism of action of cerebral epoxyeicosatrienoic acids on cerebral arterial smooth muscle. Am J Physiol. 1992 Aug;263(2 Pt 2):H519–H525. doi: 10.1152/ajpheart.1992.263.2.H519. [DOI] [PubMed] [Google Scholar]
  13. Haberl R. L., Anneser F., Villringer A., Einhäupl K. M. Angiotensin II induces endothelium-dependent vasodilation of rat cerebral arterioles. Am J Physiol. 1990 Jun;258(6 Pt 2):H1840–H1846. doi: 10.1152/ajpheart.1990.258.6.H1840. [DOI] [PubMed] [Google Scholar]
  14. Haberl R. L., Decker P. J., Einhäupl K. M. Angiotensin degradation products mediate endothelium-dependent dilation of rabbit brain arterioles. Circ Res. 1991 Jun;68(6):1621–1627. doi: 10.1161/01.res.68.6.1621. [DOI] [PubMed] [Google Scholar]
  15. Harder D. R., Campbell W. B., Roman R. J. Role of cytochrome P-450 enzymes and metabolites of arachidonic acid in the control of vascular tone. J Vasc Res. 1995 Mar-Apr;32(2):79–92. doi: 10.1159/000159080. [DOI] [PubMed] [Google Scholar]
  16. Hayashi K., Suzuki H., Saruta T. Segmental differences in angiotensin receptor subtypes in interlobular artery of hydronephrotic rat kidneys. Am J Physiol. 1993 Dec;265(6 Pt 2):F881–F885. doi: 10.1152/ajprenal.1993.265.6.F881. [DOI] [PubMed] [Google Scholar]
  17. Hecker M., Bara A. T., Bauersachs J., Busse R. Characterization of endothelium-derived hyperpolarizing factor as a cytochrome P450-derived arachidonic acid metabolite in mammals. J Physiol. 1994 Dec 1;481(Pt 2):407–414. doi: 10.1113/jphysiol.1994.sp020449. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Hein L., Barsh G. S., Pratt R. E., Dzau V. J., Kobilka B. K. Behavioural and cardiovascular effects of disrupting the angiotensin II type-2 receptor in mice. Nature. 1995 Oct 26;377(6551):744–747. doi: 10.1038/377744a0. [DOI] [PubMed] [Google Scholar]
  19. Hu S., Kim H. S. Activation of K+ channel in vascular smooth muscles by cytochrome P450 metabolites of arachidonic acid. Eur J Pharmacol. 1993 Jan 12;230(2):215–221. doi: 10.1016/0014-2999(93)90805-r. [DOI] [PubMed] [Google Scholar]
  20. Ichiki T., Labosky P. A., Shiota C., Okuyama S., Imagawa Y., Fogo A., Niimura F., Ichikawa I., Hogan B. L., Inagami T. Effects on blood pressure and exploratory behaviour of mice lacking angiotensin II type-2 receptor. Nature. 1995 Oct 26;377(6551):748–750. doi: 10.1038/377748a0. [DOI] [PubMed] [Google Scholar]
  21. Imig J. D., Zou A. P., Ortiz de Montellano P. R., Sui Z., Roman R. J. Cytochrome P-450 inhibitors alter afferent arteriolar responses to elevations in pressure. Am J Physiol. 1994 May;266(5 Pt 2):H1879–H1885. doi: 10.1152/ajpheart.1994.266.5.H1879. [DOI] [PubMed] [Google Scholar]
  22. Ito S., Arima S., Ren Y. L., Juncos L. A., Carretero O. A. Endothelium-derived relaxing factor/nitric oxide modulates angiotensin II action in the isolated microperfused rabbit afferent but not efferent arteriole. J Clin Invest. 1993 May;91(5):2012–2019. doi: 10.1172/JCI116423. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Ito S., Carretero O. A. An in vitro approach to the study of macula densa-mediated glomerular hemodynamics. Kidney Int. 1990 Dec;38(6):1206–1210. doi: 10.1038/ki.1990.335. [DOI] [PubMed] [Google Scholar]
  24. Ito S., Johnson C. S., Carretero O. A. Modulation of angiotensin II-induced vasoconstriction by endothelium-derived relaxing factor in the isolated microperfused rabbit afferent arteriole. J Clin Invest. 1991 May;87(5):1656–1663. doi: 10.1172/JCI115181. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Itoh S., Carretero O. A., Murray R. D. Possible role of adenosine in the macula densa mechanism of renin release in rabbits. J Clin Invest. 1985 Oct;76(4):1412–1417. doi: 10.1172/JCI112118. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Itoh S., Carretero O. A. Role of the macula densa in renin release. Hypertension. 1985 May-Jun;7(3 Pt 2):I49–I54. doi: 10.1161/01.hyp.7.3_pt_2.i49. [DOI] [PubMed] [Google Scholar]
  27. Jacobs L. S., Douglas J. G. Angiotensin II type 2 receptor subtype mediates phospholipase A2-dependent signaling in rabbit proximal tubular epithelial cells. Hypertension. 1996 Oct;28(4):663–668. doi: 10.1161/01.hyp.28.4.663. [DOI] [PubMed] [Google Scholar]
  28. Juncos L. A., Garvin J., Carretero O. A., Ito S. Flow modulates myogenic responses in isolated microperfused rabbit afferent arterioles via endothelium-derived nitric oxide. J Clin Invest. 1995 Jun;95(6):2741–2748. doi: 10.1172/JCI117977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Juncos L. A., Ren Y., Arima S., Garvin J., Carretero O. A., Ito S. Angiotensin II action in isolated microperfused rabbit afferent arterioles is modulated by flow. Kidney Int. 1996 Feb;49(2):374–381. doi: 10.1038/ki.1996.55. [DOI] [PubMed] [Google Scholar]
  30. Langton P. D., Nelson M. T., Huang Y., Standen N. B. Block of calcium-activated potassium channels in mammalian arterial myocytes by tetraethylammonium ions. Am J Physiol. 1991 Mar;260(3 Pt 2):H927–H934. doi: 10.1152/ajpheart.1991.260.3.H927. [DOI] [PubMed] [Google Scholar]
  31. Lo M., Liu K. L., Lantelme P., Sassard J. Subtype 2 of angiotensin II receptors controls pressure-natriuresis in rats. J Clin Invest. 1995 Mar;95(3):1394–1397. doi: 10.1172/JCI117792. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Macari D., Bottari S., Whitebread S., De Gasparo M., Levens N. Renal actions of the selective angiotensin AT2 receptor ligands CGP 42112B and PD 123319 in the sodium-depleted rat. Eur J Pharmacol. 1993 Nov 2;249(1):85–93. doi: 10.1016/0014-2999(93)90665-5. [DOI] [PubMed] [Google Scholar]
  33. Madhun Z. T., Goldthwait D. A., McKay D., Hopfer U., Douglas J. G. An epoxygenase metabolite of arachidonic acid mediates angiotensin II-induced rises in cytosolic calcium in rabbit proximal tubule epithelial cells. J Clin Invest. 1991 Aug;88(2):456–461. doi: 10.1172/JCI115325. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. McGiff J. C. Cytochrome P-450 metabolism of arachidonic acid. Annu Rev Pharmacol Toxicol. 1991;31:339–369. doi: 10.1146/annurev.pa.31.040191.002011. [DOI] [PubMed] [Google Scholar]
  35. Moncada S., Palmer R. M., Higgs E. A. Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol Rev. 1991 Jun;43(2):109–142. [PubMed] [Google Scholar]
  36. Mundel P., Bachmann S., Bader M., Fischer A., Kummer W., Mayer B., Kriz W. Expression of nitric oxide synthase in kidney macula densa cells. Kidney Int. 1992 Oct;42(4):1017–1019. doi: 10.1038/ki.1992.382. [DOI] [PubMed] [Google Scholar]
  37. Munzenmaier D. H., Greene A. S. Opposing actions of angiotensin II on microvascular growth and arterial blood pressure. Hypertension. 1996 Mar;27(3 Pt 2):760–765. doi: 10.1161/01.hyp.27.3.760. [DOI] [PubMed] [Google Scholar]
  38. Omata K., Abraham N. G., Schwartzman M. L. Renal cytochrome P-450-arachidonic acid metabolism: localization and hormonal regulation in SHR. Am J Physiol. 1992 Apr;262(4 Pt 2):F591–F599. doi: 10.1152/ajprenal.1992.262.4.F591. [DOI] [PubMed] [Google Scholar]
  39. Oyekan A. O., McGiff J. C., Quilley J. Cytochrome P-450-dependent vasodilator responses to arachidonic acid in the isolated, perfused kidney of the rat. Circ Res. 1991 Apr;68(4):958–965. doi: 10.1161/01.res.68.4.958. [DOI] [PubMed] [Google Scholar]
  40. Sacerdoti D., Escalante B., Abraham N. G., McGiff J. C., Levere R. D., Schwartzman M. L. Treatment with tin prevents the development of hypertension in spontaneously hypertensive rats. Science. 1989 Jan 20;243(4889):388–390. doi: 10.1126/science.2492116. [DOI] [PubMed] [Google Scholar]
  41. Schwartzman M. L., Abraham N. G., Carroll M. A., Levere R. D., McGiff J. C. Regulation of arachidonic acid metabolism by cytochrome P-450 in rabbit kidney. Biochem J. 1986 Aug 15;238(1):283–290. doi: 10.1042/bj2380283. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Shibouta Y., Inada Y., Ojima M., Wada T., Noda M., Sanada T., Kubo K., Kohara Y., Naka T., Nishikawa K. Pharmacological profile of a highly potent and long-acting angiotensin II receptor antagonist, 2-ethoxy-1-[[2'-(1H-tetrazol-5-yl)biphenyl-4- yl]methyl]-1H-benzimidazole-7-carboxylic acid (CV-11974), and its prodrug, (+/-)-1-(cyclohexyloxycarbonyloxy)-ethyl 2-ethoxy-1-[[2'-(1H-tetrazol-5- yl)biphenyl-4-yl]methyl]-1H-benzimidazole-7-carboxylate (TCV-116). J Pharmacol Exp Ther. 1993 Jul;266(1):114–120. [PubMed] [Google Scholar]
  43. Singh I., Grams M., Wang W. H., Yang T., Killen P., Smart A., Schnermann J., Briggs J. P. Coordinate regulation of renal expression of nitric oxide synthase, renin, and angiotensinogen mRNA by dietary salt. Am J Physiol. 1996 Jun;270(6 Pt 2):F1027–F1037. doi: 10.1152/ajprenal.1996.270.6.F1027. [DOI] [PubMed] [Google Scholar]
  44. Siragy H. M., Carey R. M. The subtype-2 (AT2) angiotensin receptor regulates renal cyclic guanosine 3', 5'-monophosphate and AT1 receptor-mediated prostaglandin E2 production in conscious rats. J Clin Invest. 1996 Apr 15;97(8):1978–1982. doi: 10.1172/JCI118630. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Siragy H. M., Howell N. L., Ragsdale N. V., Carey R. M. Renal interstitial fluid angiotensin. Modulation by anesthesia, epinephrine, sodium depletion, and renin inhibition. Hypertension. 1995 May;25(5):1021–1024. doi: 10.1161/01.hyp.25.5.1021. [DOI] [PubMed] [Google Scholar]
  46. Stoll M., Steckelings U. M., Paul M., Bottari S. P., Metzger R., Unger T. The angiotensin AT2-receptor mediates inhibition of cell proliferation in coronary endothelial cells. J Clin Invest. 1995 Feb;95(2):651–657. doi: 10.1172/JCI117710. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Timmermans P. B., Wong P. C., Chiu A. T., Herblin W. F., Benfield P., Carini D. J., Lee R. J., Wexler R. R., Saye J. A., Smith R. D. Angiotensin II receptors and angiotensin II receptor antagonists. Pharmacol Rev. 1993 Jun;45(2):205–251. [PubMed] [Google Scholar]
  48. Tojo A., Madsen K. M., Wilcox C. S. Expression of immunoreactive nitric oxide synthase isoforms in rat kidney. Effects of dietary salt and losartan. Jpn Heart J. 1995 May;36(3):389–398. doi: 10.1536/ihj.36.389. [DOI] [PubMed] [Google Scholar]
  49. Tsutsumi K., Saavedra J. M. Characterization of AT2 angiotensin II receptors in rat anterior cerebral arteries. Am J Physiol. 1991 Sep;261(3 Pt 2):H667–H670. doi: 10.1152/ajpheart.1991.261.3.H667. [DOI] [PubMed] [Google Scholar]
  50. Tsuzuki S., Matoba T., Eguchi S., Inagami T. Angiotensin II type 2 receptor inhibits cell proliferation and activates tyrosine phosphatase. Hypertension. 1996 Nov;28(5):916–918. doi: 10.1161/01.hyp.28.5.916. [DOI] [PubMed] [Google Scholar]
  51. Whitebread S., Mele M., Kamber B., de Gasparo M. Preliminary biochemical characterization of two angiotensin II receptor subtypes. Biochem Biophys Res Commun. 1989 Aug 30;163(1):284–291. doi: 10.1016/0006-291x(89)92133-5. [DOI] [PubMed] [Google Scholar]
  52. Wilcox C. S., Welch W. J., Murad F., Gross S. S., Taylor G., Levi R., Schmidt H. H. Nitric oxide synthase in macula densa regulates glomerular capillary pressure. Proc Natl Acad Sci U S A. 1992 Dec 15;89(24):11993–11997. doi: 10.1073/pnas.89.24.11993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Zou A. P., Fleming J. T., Falck J. R., Jacobs E. R., Gebremedhin D., Harder D. R., Roman R. J. 20-HETE is an endogenous inhibitor of the large-conductance Ca(2+)-activated K+ channel in renal arterioles. Am J Physiol. 1996 Jan;270(1 Pt 2):R228–R237. doi: 10.1152/ajpregu.1996.270.1.R228. [DOI] [PubMed] [Google Scholar]
  54. Zou A. P., Fleming J. T., Falck J. R., Jacobs E. R., Gebremedhin D., Harder D. R., Roman R. J. Stereospecific effects of epoxyeicosatrienoic acids on renal vascular tone and K(+)-channel activity. Am J Physiol. 1996 May;270(5 Pt 2):F822–F832. doi: 10.1152/ajprenal.1996.270.5.F822. [DOI] [PubMed] [Google Scholar]
  55. Zou A. P., Imig J. D., Kaldunski M., Ortiz de Montellano P. R., Sui Z., Roman R. J. Inhibition of renal vascular 20-HETE production impairs autoregulation of renal blood flow. Am J Physiol. 1994 Feb;266(2 Pt 2):F275–F282. doi: 10.1152/ajprenal.1994.266.2.F275. [DOI] [PubMed] [Google Scholar]
  56. Zou A. P., Imig J. D., Ortiz de Montellano P. R., Sui Z., Falck J. R., Roman R. J. Effect of P-450 omega-hydroxylase metabolites of arachidonic acid on tubuloglomerular feedback. Am J Physiol. 1994 Jun;266(6 Pt 2):F934–F941. doi: 10.1152/ajprenal.1994.266.6.F934. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES