Abstract
Systemic delivery of specific therapeutic proteins by a parenteral route of administration is a recognized practice in the management of several gene defects and acquired diseases. As an alternative to repetitive parenteral administration, gene therapy may provide a novel means for systemic delivery of therapeutic proteins while improving patient compliance and therapeutic efficacy. However, for gene therapy to be an efficacious and safe approach to the clinical management of such diseases, gene expression must be tightly regulated. These investigations demonstrate precise in vivo control of protein expression from cells that are engineered to secrete human growth hormone (hGH) in response to stimulation by rapamycin. The cells were implanted intramuscularly into nu/nu mice and stimulated by intravenous or oral administration of rapamycin. In vivo experiments demonstrate that the activity and pharmacokinetics of rapamycin determine the level of serum hGH that result from the engineered cells. In addition, responsiveness of the cells to rapamycin, number of cells implanted, hGH expression kinetics, and the pharmacokinetics of hGH itself, also influence the circulating levels of hGH after rapamycin stimulation. Controlled manipulation of several of these parameters, either independently or in combination, allows for precise regulation of circulating hGH concentration in vivo.
Full Text
The Full Text of this article is available as a PDF (213.0 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Abraham R. T., Wiederrecht G. J. Immunopharmacology of rapamycin. Annu Rev Immunol. 1996;14:483–510. doi: 10.1146/annurev.immunol.14.1.483. [DOI] [PubMed] [Google Scholar]
- Amato G., Izzo G., La Montagna G., Bellastella A. Low dose recombinant human growth hormone normalizes bone metabolism and cortical bone density and improves trabecular bone density in growth hormone deficient adults without causing adverse effects. Clin Endocrinol (Oxf) 1996 Jul;45(1):27–32. [PubMed] [Google Scholar]
- Baker H., Sidorowicz A., Sehgal S. N., Vézina C. Rapamycin (AY-22,989), a new antifungal antibiotic. III. In vitro and in vivo evaluation. J Antibiot (Tokyo) 1978 Jun;31(6):539–545. doi: 10.7164/antibiotics.31.539. [DOI] [PubMed] [Google Scholar]
- Bohl D., Naffakh N., Heard J. M. Long-term control of erythropoietin secretion by doxycycline in mice transplanted with engineered primary myoblasts. Nat Med. 1997 Mar;3(3):299–305. doi: 10.1038/nm0397-299. [DOI] [PubMed] [Google Scholar]
- Chen H., Qi S., Xu D., Wu J., Daloze P. The immunosuppressive effect of rapamycin on mouse small bowel transplantation. Transplantation. 1996 Feb 27;61(4):523–526. doi: 10.1097/00007890-199602270-00001. [DOI] [PubMed] [Google Scholar]
- Chen J., Zheng X. F., Brown E. J., Schreiber S. L. Identification of an 11-kDa FKBP12-rapamycin-binding domain within the 289-kDa FKBP12-rapamycin-associated protein and characterization of a critical serine residue. Proc Natl Acad Sci U S A. 1995 May 23;92(11):4947–4951. doi: 10.1073/pnas.92.11.4947. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dhawan J., Rando T. A., Elson S. L., Bujard H., Blau H. M. Tetracycline-regulated gene expression following direct gene transfer into mouse skeletal muscle. Somat Cell Mol Genet. 1995 Jul;21(4):233–240. doi: 10.1007/BF02255778. [DOI] [PubMed] [Google Scholar]
- Dias V. C., Yatscoff R. W. Investigation of rapamycin transport and uptake across absorptive human intestinal cell monolayers. Clin Biochem. 1994 Feb;27(1):31–36. doi: 10.1016/0009-9120(94)90008-6. [DOI] [PubMed] [Google Scholar]
- Granger D. K., Cromwell J. W., Chen S. C., Goswitz J. J., Morrow D. T., Beierle F. A., Sehgal S. N., Canafax D. M., Matas A. J. Prolongation of renal allograft survival in a large animal model by oral rapamycin monotherapy. Transplantation. 1995 Jan 27;59(2):183–186. [PubMed] [Google Scholar]
- Heartlein M. W., Roman V. A., Jiang J. L., Sellers J. W., Zuliani A. M., Treco D. A., Selden R. F. Long-term production and delivery of human growth hormone in vivo. Proc Natl Acad Sci U S A. 1994 Nov 8;91(23):10967–10971. doi: 10.1073/pnas.91.23.10967. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Helms S. R., Rottman F. M. Characterization of an inducible promoter system to investigate decay of stable mRNA molecules. Nucleic Acids Res. 1990 Jan 25;18(2):255–259. doi: 10.1093/nar/18.2.255. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hindmarsh P. C., Brook C. G. Final height of short normal children treated with growth hormone. Lancet. 1996 Jul 6;348(9019):13–16. doi: 10.1016/s0140-6736(96)01038-0. [DOI] [PubMed] [Google Scholar]
- Isgaard J., Carlsson L., Isaksson O. G., Jansson J. O. Pulsatile intravenous growth hormone (GH) infusion to hypophysectomized rats increases insulin-like growth factor I messenger ribonucleic acid in skeletal tissues more effectively than continuous GH infusion. Endocrinology. 1988 Dec;123(6):2605–2610. doi: 10.1210/endo-123-6-2605. [DOI] [PubMed] [Google Scholar]
- Kahan B. D., Chang J. Y., Sehgal S. N. Preclinical evaluation of a new potent immunosuppressive agent, rapamycin. Transplantation. 1991 Aug;52(2):185–191. doi: 10.1097/00007890-199108000-00001. [DOI] [PubMed] [Google Scholar]
- Kay J. E., Kromwel L., Doe S. E., Denyer M. Inhibition of T and B lymphocyte proliferation by rapamycin. Immunology. 1991 Apr;72(4):544–549. [PMC free article] [PubMed] [Google Scholar]
- Oscarsson J., Lindstedt G., Lundberg P. A., Edén S. Continuous subcutaneous infusion of low dose growth hormone decreases serum sex-hormone binding globulin and testosterone concentrations in moderately obese middle-aged men. Clin Endocrinol (Oxf) 1996 Jan;44(1):23–29. doi: 10.1046/j.1365-2265.1996.635457.x. [DOI] [PubMed] [Google Scholar]
- Pomerantz J. L., Sharp P. A., Pabo C. O. Structure-based design of transcription factors. Science. 1995 Jan 6;267(5194):93–96. doi: 10.1126/science.7809612. [DOI] [PubMed] [Google Scholar]
- Riddell S. R., Elliott M., Lewinsohn D. A., Gilbert M. J., Wilson L., Manley S. A., Lupton S. D., Overell R. W., Reynolds T. C., Corey L. T-cell mediated rejection of gene-modified HIV-specific cytotoxic T lymphocytes in HIV-infected patients. Nat Med. 1996 Feb;2(2):216–223. doi: 10.1038/nm0296-216. [DOI] [PubMed] [Google Scholar]
- Rivera V. M., Clackson T., Natesan S., Pollock R., Amara J. F., Keenan T., Magari S. R., Phillips T., Courage N. L., Cerasoli F., Jr A humanized system for pharmacologic control of gene expression. Nat Med. 1996 Sep;2(9):1028–1032. doi: 10.1038/nm0996-1028. [DOI] [PubMed] [Google Scholar]
- Schmitz M. L., Baeuerle P. A. The p65 subunit is responsible for the strong transcription activating potential of NF-kappa B. EMBO J. 1991 Dec;10(12):3805–3817. doi: 10.1002/j.1460-2075.1991.tb04950.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sehgal S. N., Molnar-Kimber K., Ocain T. D., Weichman B. M. Rapamycin: a novel immunosuppressive macrolide. Med Res Rev. 1994 Jan;14(1):1–22. doi: 10.1002/med.2610140102. [DOI] [PubMed] [Google Scholar]
- Shyu A. B., Belasco J. G., Greenberg M. E. Two distinct destabilizing elements in the c-fos message trigger deadenylation as a first step in rapid mRNA decay. Genes Dev. 1991 Feb;5(2):221–231. doi: 10.1101/gad.5.2.221. [DOI] [PubMed] [Google Scholar]
- Standaert R. F., Galat A., Verdine G. L., Schreiber S. L. Molecular cloning and overexpression of the human FK506-binding protein FKBP. Nature. 1990 Aug 16;346(6285):671–674. doi: 10.1038/346671a0. [DOI] [PubMed] [Google Scholar]
- Stepkowski S. M., Chen H., Daloze P., Kahan B. D. Rapamycin, a potent immunosuppressive drug for vascularized heart, kidney, and small bowel transplantation in the rat. Transplantation. 1991 Jan;51(1):22–26. doi: 10.1097/00007890-199101000-00002. [DOI] [PubMed] [Google Scholar]
- Wang Y., O'Malley B. W., Jr, Tsai S. Y., O'Malley B. W. A regulatory system for use in gene transfer. Proc Natl Acad Sci U S A. 1994 Aug 16;91(17):8180–8184. doi: 10.1073/pnas.91.17.8180. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wolf E., Kahnt E., Ehrlein J., Hermanns W., Brem G., Wanke R. Effects of long-term elevated serum levels of growth hormone on life expectancy of mice: lessons from transgenic animal models. Mech Ageing Dev. 1993 May;68(1-3):71–87. doi: 10.1016/0047-6374(93)90141-d. [DOI] [PubMed] [Google Scholar]
- Yatscoff R. W. Pharmacokinetics of rapamycin. Transplant Proc. 1996 Apr;28(2):970–973. [PubMed] [Google Scholar]
