Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1997 Dec 1;100(11):2892–2899. doi: 10.1172/JCI119838

Regulation of exogenous and endogenous glucose metabolism by insulin and acetoacetate in the isolated working rat heart. A three tracer study of glycolysis, glycogen metabolism, and glucose oxidation.

R R Russell 3rd 1, G W Cline 1, P H Guthrie 1, G W Goodwin 1, G I Shulman 1, H Taegtmeyer 1
PMCID: PMC508496  PMID: 9389756

Abstract

Myocardial glucose use is regulated by competing substrates and hormonal influences. However, the interactions of these effectors on the metabolism of exogenous glucose and glucose derived from endogenous glycogen are not completely understood. In order to determine changes in exogenous glucose uptake, glucose oxidation, and glycogen enrichment, hearts were perfused with glucose (5 mM) either alone, or glucose plus insulin (40 microU/ml), glucose plus acetoacetate (5 mM), or glucose plus insulin and acetoacetate, using a three tracer (3H, 14C, and 13C) technique. Insulin-stimulated glucose uptake and lactate production in the absence of acetoacetate, while acetoacetate inhibited the uptake of glucose and the oxidation of both exogenous glucose and endogenous carbohydrate. Depending on the metabolic conditions, the contribution of glycogen to carbohydrate metabolism varied from 20-60%. The addition of acetoacetate or insulin increased the incorporation of exogenous glucose into glycogen twofold, and the combination of the two had additive effects on the incorporation of glucose into glycogen. In contrast, the glycogen content was similar for the three groups. The increased incorporation of glucose in glycogen without a significant change in the glycogen content in hearts perfused with glucose, acetoacetate, and insulin suggests increased glycogen turnover. We conclude that insulin and acetoacetate regulate the incorporation of glucose into glycogen as well as the relative contributions of exogenous glucose and endogenous carbohydrate to myocardial energy metabolism by different mechanisms.

Full Text

The Full Text of this article is available as a PDF (199.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bolukoglu H., Goodwin G. W., Guthrie P. H., Carmical S. G., Chen T. M., Taegtmeyer H. Metabolic fate of glucose in reversible low-flow ischemia of the isolated working rat heart. Am J Physiol. 1996 Mar;270(3 Pt 2):H817–H826. doi: 10.1152/ajpheart.1996.270.3.H817. [DOI] [PubMed] [Google Scholar]
  2. Brainard J. R., Hutson J. Y., Hoekenga D. E., Lenhoff R. Ordered synthesis and mobilization of glycogen in the perfused heart. Biochemistry. 1989 Dec 12;28(25):9766–9772. doi: 10.1021/bi00451a033. [DOI] [PubMed] [Google Scholar]
  3. Depré C., Veitch K., Hue L. Role of fructose 2,6-bisphosphate in the control of glycolysis. Stimulation of glycogen synthesis by lactate in the isolated working rat heart. Acta Cardiol. 1993;48(1):147–164. [PubMed] [Google Scholar]
  4. Ebeling P., Koivisto V. A. Non-esterified fatty acids regulate lipid and glucose oxidation and glycogen synthesis in healthy man. Diabetologia. 1994 Feb;37(2):202–209. doi: 10.1007/s001250050094. [DOI] [PubMed] [Google Scholar]
  5. GARLAND P. B., RANDLE P. J., NEWSHOLME E. A. CITRATE AS AN INTERMEDIARY IN THE INHIBITION OF PHOSPHOFRUCTOKINASE IN RAT HEART MUSCLE BY FATTY ACIDS, KETONE BODIES, PYRUVATE, DIABETES, AND STARVATION. Nature. 1963 Oct 12;200:169–170. doi: 10.1038/200169a0. [DOI] [PubMed] [Google Scholar]
  6. Goodwin G. W., Ahmad F., Taegtmeyer H. Preferential oxidation of glycogen in isolated working rat heart. J Clin Invest. 1996 Mar 15;97(6):1409–1416. doi: 10.1172/JCI118561. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Goodwin G. W., Arteaga J. R., Taegtmeyer H. Glycogen turnover in the isolated working rat heart. J Biol Chem. 1995 Apr 21;270(16):9234–9240. doi: 10.1074/jbc.270.16.9234. [DOI] [PubMed] [Google Scholar]
  8. Hariharan R., Bray M., Ganim R., Doenst T., Goodwin G. W., Taegtmeyer H. Fundamental limitations of [18F]2-deoxy-2-fluoro-D-glucose for assessing myocardial glucose uptake. Circulation. 1995 May 1;91(9):2435–2444. doi: 10.1161/01.cir.91.9.2435. [DOI] [PubMed] [Google Scholar]
  9. Henning S. L., Wambolt R. B., Schönekess B. O., Lopaschuk G. D., Allard M. F. Contribution of glycogen to aerobic myocardial glucose utilization. Circulation. 1996 Apr 15;93(8):1549–1555. doi: 10.1161/01.cir.93.8.1549. [DOI] [PubMed] [Google Scholar]
  10. Jeffrey F. M., Diczku V., Sherry A. D., Malloy C. R. Substrate selection in the isolated working rat heart: effects of reperfusion, afterload, and concentration. Basic Res Cardiol. 1995 Sep-Oct;90(5):388–396. doi: 10.1007/BF00788500. [DOI] [PubMed] [Google Scholar]
  11. Kashiwaya Y., Sato K., Tsuchiya N., Thomas S., Fell D. A., Veech R. L., Passonneau J. V. Control of glucose utilization in working perfused rat heart. J Biol Chem. 1994 Oct 14;269(41):25502–25514. [PubMed] [Google Scholar]
  12. Katz J., Dunn A. Glucose-2-t as a tracer for glucose metabolism. Biochemistry. 1967 Jan;6(1):1–5. doi: 10.1021/bi00853a001. [DOI] [PubMed] [Google Scholar]
  13. Kelley D. E., Mokan M., Simoneau J. A., Mandarino L. J. Interaction between glucose and free fatty acid metabolism in human skeletal muscle. J Clin Invest. 1993 Jul;92(1):91–98. doi: 10.1172/JCI116603. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Latipä P. M., Peuhkurinen K. J., Hiltunen J. K., Hassinen I. E. Regulation of pyruvate dehydrogenase during infusion of fatty acids of varying chain lengths in the perfused rat heart. J Mol Cell Cardiol. 1985 Dec;17(12):1161–1171. doi: 10.1016/s0022-2828(85)80112-7. [DOI] [PubMed] [Google Scholar]
  15. Laughlin M. R., Taylor J., Chesnick A. S., Balaban R. S. Nonglucose substrates increase glycogen synthesis in vivo in dog heart. Am J Physiol. 1994 Jul;267(1 Pt 2):H219–H223. doi: 10.1152/ajpheart.1994.267.1.H217. [DOI] [PubMed] [Google Scholar]
  16. Leimer K. R., Rice R. H., Gehrke C. W. Complete mass spectra of N-trifluoroacetyl-n-butyl esters of amino acids. J Chromatogr. 1977 Aug 21;141(2):121–144. doi: 10.1016/s0021-9673(00)99131-3. [DOI] [PubMed] [Google Scholar]
  17. Lewandowski E. D., White L. T. Pyruvate dehydrogenase influences postischemic heart function. Circulation. 1995 Apr 1;91(7):2071–2079. doi: 10.1161/01.cir.91.7.2071. [DOI] [PubMed] [Google Scholar]
  18. Little J. R., Goto M., Spitzer J. J. Effect of ketones on metabolism of FFA by dog myocardium and skeletal muscle in vivo. Am J Physiol. 1970 Nov;219(5):1458–1463. doi: 10.1152/ajplegacy.1970.219.5.1458. [DOI] [PubMed] [Google Scholar]
  19. Malloy C. R., Sherry A. D., Jeffrey F. M. Carbon flux through citric acid cycle pathways in perfused heart by 13C NMR spectroscopy. FEBS Lett. 1987 Feb 9;212(1):58–62. doi: 10.1016/0014-5793(87)81556-9. [DOI] [PubMed] [Google Scholar]
  20. Malloy C. R., Sherry A. D., Jeffrey F. M. Evaluation of carbon flux and substrate selection through alternate pathways involving the citric acid cycle of the heart by 13C NMR spectroscopy. J Biol Chem. 1988 May 25;263(15):6964–6971. [PubMed] [Google Scholar]
  21. McNulty P. H., Sinusas A. J., Shi C. Q., Dione D., Young L. H., Cline G. C., Shulman G. I. Glucose metabolism distal to a critical coronary stenosis in a canine model of low-flow myocardial ischemia. J Clin Invest. 1996 Jul 1;98(1):62–69. doi: 10.1172/JCI118778. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Neely J. R., Rovetto M. J., Oram J. F. Myocardial utilization of carbohydrate and lipids. Prog Cardiovasc Dis. 1972 Nov-Dec;15(3):289–329. doi: 10.1016/0033-0620(72)90029-1. [DOI] [PubMed] [Google Scholar]
  23. Nguyê V. T., Mossberg K. A., Tewson T. J., Wong W. H., Rowe R. W., Coleman G. M., Taegtmeyer H. Temporal analysis of myocardial glucose metabolism by 2-[18F]fluoro-2-deoxy-D-glucose. Am J Physiol. 1990 Oct;259(4 Pt 2):H1022–H1031. doi: 10.1152/ajpheart.1990.259.4.H1022. [DOI] [PubMed] [Google Scholar]
  24. OLSON R. E. Effect of pyruvate and acetoacetate on the metabolism of fatty acids by the perfused rat heart. Nature. 1962 Aug 11;195:597–599. doi: 10.1038/195597b0. [DOI] [PubMed] [Google Scholar]
  25. Olson M. S., Dennis S. C., DeBuysere M. S., Padma A. The regulation of pyruvate dehydrogenase in the isolated perfused rat heart. J Biol Chem. 1978 Oct 25;253(20):7369–7375. [PubMed] [Google Scholar]
  26. Russell R. R., 3rd, Nguyê V. T., Mrus J. M., Taegtmeyer H. Fasting and lactate unmask insulin responsiveness in the isolated working rat heart. Am J Physiol. 1992 Sep;263(3 Pt 1):E556–E561. doi: 10.1152/ajpendo.1992.263.3.E556. [DOI] [PubMed] [Google Scholar]
  27. Russell R. R., 3rd, Taegtmeyer H. Changes in citric acid cycle flux and anaplerosis antedate the functional decline in isolated rat hearts utilizing acetoacetate. J Clin Invest. 1991 Feb;87(2):384–390. doi: 10.1172/JCI115008. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Saddik M., Lopaschuk G. D. Myocardial triglyceride turnover and contribution to energy substrate utilization in isolated working rat hearts. J Biol Chem. 1991 May 5;266(13):8162–8170. [PubMed] [Google Scholar]
  29. Schönekess B. O., Brindley P. G., Lopaschuk G. D. Calcium regulation of glycolysis, glucose oxidation, and fatty acid oxidation in the aerobic and ischemic heart. Can J Physiol Pharmacol. 1995 Nov;73(11):1632–1640. doi: 10.1139/y95-725. [DOI] [PubMed] [Google Scholar]
  30. Shulman G. I., Rossetti L., Rothman D. L., Blair J. B., Smith D. Quantitative analysis of glycogen repletion by nuclear magnetic resonance spectroscopy in the conscious rat. J Clin Invest. 1987 Aug;80(2):387–393. doi: 10.1172/JCI113084. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Taegtmeyer H., Hems R., Krebs H. A. Utilization of energy-providing substrates in the isolated working rat heart. Biochem J. 1980 Mar 15;186(3):701–711. doi: 10.1042/bj1860701. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Villar-Palasi C. Effect of glucose phosphorylation on the activation by insulin of skeletal muscle glycogen synthase. Biochim Biophys Acta. 1995 May 11;1244(1):203–208. doi: 10.1016/0304-4165(95)00006-w. [DOI] [PubMed] [Google Scholar]
  33. WILLIAMSON J. R., KREBS H. A. Acetoacetate as fuel of respiration in the perfused rat heart. Biochem J. 1961 Sep;80:540–547. doi: 10.1042/bj0800540. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Weiss R. G., Chacko V. P., Gerstenblith G. Fatty acid regulation of glucose metabolism in the intact beating rat heart assessed by carbon-13 NMR spectroscopy: the critical role of pyruvate dehydrogenase. J Mol Cell Cardiol. 1989 May;21(5):469–478. doi: 10.1016/0022-2828(89)90787-6. [DOI] [PubMed] [Google Scholar]
  35. Zhao P., Sherry A. D., Malloy C. R., Babcock E. E. Direct observation of lactate and alanine by proton double quantum spectroscopy in rat hearts supplied with [3-13C]pyruvate. FEBS Lett. 1992 Jun 1;303(2-3):247–250. doi: 10.1016/0014-5793(92)80530-t. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES