Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1997 Dec 1;100(11):2900–2908. doi: 10.1172/JCI119839

Troglitazone action is independent of adipose tissue.

C F Burant 1, S Sreenan 1, K Hirano 1, T A Tai 1, J Lohmiller 1, J Lukens 1, N O Davidson 1, S Ross 1, R A Graves 1
PMCID: PMC508497  PMID: 9389757

Abstract

We have investigated the antidiabetic action of troglitazone in aP2/DTA mice, whose white and brown fat was virtually eliminated by fat-specific expression of diphtheria toxin A chain. aP2/DTA mice had markedly suppressed serum leptin levels and were hyperphagic, but did not gain excess weight. aP2/DTA mice fed a control diet were hyperlipidemic, hyperglycemic, and had hyperinsulinemia indicative of insulin-resistant diabetes. Treatment with troglitazone alleviated the hyperglycemia, normalized the tolerance to intraperitoneally injected glucose, and significantly decreased elevated insulin levels. Troglitazone also markedly decreased the serum levels of cholesterol, triglycerides, and free fatty acids both in wild-type and aP2/DTA mice. The decrease in serum triglycerides in aP2/DTA mice was due to a marked reduction in VLDL- and LDL-associated triglyceride. In skeletal muscle, triglyceride levels were decreased in aP2/DTA mice compared with controls, but glycogen levels were increased. Troglitazone treatment decreased skeletal muscle, but not hepatic triglyceride and increased hepatic and muscle glycogen content in wild-type mice. Troglitazone decreased muscle glycogen content in aP2/DTA mice without affecting muscle triglyceride levels. The levels of peroxisomal proliferator-activated receptor gamma mRNA in liver increased slightly in aP2/DTA mice and were not changed by troglitazone treatment. The results demonstrate that insulin resistance and diabetes can occur in animals without significant adipose deposits. Furthermore, troglitazone can alter glucose and lipid metabolism independent of its effects on adipose tissue.

Full Text

The Full Text of this article is available as a PDF (299.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Boden G. Role of fatty acids in the pathogenesis of insulin resistance and NIDDM. Diabetes. 1997 Jan;46(1):3–10. [PubMed] [Google Scholar]
  2. Braissant O., Foufelle F., Scotto C., Dauça M., Wahli W. Differential expression of peroxisome proliferator-activated receptors (PPARs): tissue distribution of PPAR-alpha, -beta, and -gamma in the adult rat. Endocrinology. 1996 Jan;137(1):354–366. doi: 10.1210/endo.137.1.8536636. [DOI] [PubMed] [Google Scholar]
  3. Burant C. F., Lemmon S. K., Treutelaar M. K., Buse M. G. Insulin resistance of denervated rat muscle: a model for impaired receptor-function coupling. Am J Physiol. 1984 Nov;247(5 Pt 1):E657–E666. doi: 10.1152/ajpendo.1984.247.5.E657. [DOI] [PubMed] [Google Scholar]
  4. Castle C. K., Colca J. R., Melchior G. W. Lipoprotein profile characterization of the KKA(y) mouse, a rodent model of type II diabetes, before and after treatment with the insulin-sensitizing agent pioglitazone. Arterioscler Thromb. 1993 Feb;13(2):302–309. doi: 10.1161/01.atv.13.2.302. [DOI] [PubMed] [Google Scholar]
  5. De Vos P., Lefebvre A. M., Miller S. G., Guerre-Millo M., Wong K., Saladin R., Hamann L. G., Staels B., Briggs M. R., Auwerx J. Thiazolidinediones repress ob gene expression in rodents via activation of peroxisome proliferator-activated receptor gamma. J Clin Invest. 1996 Aug 15;98(4):1004–1009. doi: 10.1172/JCI118860. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. DeFronzo R. A. Lilly lecture 1987. The triumvirate: beta-cell, muscle, liver. A collusion responsible for NIDDM. Diabetes. 1988 Jun;37(6):667–687. doi: 10.2337/diab.37.6.667. [DOI] [PubMed] [Google Scholar]
  7. Desbois-Mouthon C., Magré J., Amselem S., Reynet C., Blivet M. J., Goossens M., Capeau J., Besmond C. Lipoatrophic diabetes: genetic exclusion of the insulin receptor gene. J Clin Endocrinol Metab. 1995 Jan;80(1):314–319. doi: 10.1210/jcem.80.1.7829633. [DOI] [PubMed] [Google Scholar]
  8. Fleury C., Neverova M., Collins S., Raimbault S., Champigny O., Levi-Meyrueis C., Bouillaud F., Seldin M. F., Surwit R. S., Ricquier D. Uncoupling protein-2: a novel gene linked to obesity and hyperinsulinemia. Nat Genet. 1997 Mar;15(3):269–272. doi: 10.1038/ng0397-269. [DOI] [PubMed] [Google Scholar]
  9. Ghazzi M. N., Perez J. E., Antonucci T. K., Driscoll J. H., Huang S. M., Faja B. W., Whitcomb R. W. Cardiac and glycemic benefits of troglitazone treatment in NIDDM. The Troglitazone Study Group. Diabetes. 1997 Mar;46(3):433–439. doi: 10.2337/diab.46.3.433. [DOI] [PubMed] [Google Scholar]
  10. Hotamisligil G. S., Spiegelman B. M. Tumor necrosis factor alpha: a key component of the obesity-diabetes link. Diabetes. 1994 Nov;43(11):1271–1278. doi: 10.2337/diab.43.11.1271. [DOI] [PubMed] [Google Scholar]
  11. Inoue I., Takahashi K., Katayama S., Harada Y., Negishi K., Itabashi A., Ishii J. Effect of troglitazone (CS-045) and bezafibrate on glucose tolerance, liver glycogen synthase activity, and beta-oxidation in fructose-fed rats. Metabolism. 1995 Dec;44(12):1626–1630. doi: 10.1016/0026-0495(95)90085-3. [DOI] [PubMed] [Google Scholar]
  12. Kletzien R. F., Clarke S. D., Ulrich R. G. Enhancement of adipocyte differentiation by an insulin-sensitizing agent. Mol Pharmacol. 1992 Feb;41(2):393–398. [PubMed] [Google Scholar]
  13. Laborda J. 36B4 cDNA used as an estradiol-independent mRNA control is the cDNA for human acidic ribosomal phosphoprotein PO. Nucleic Acids Res. 1991 Jul 25;19(14):3998–3998. doi: 10.1093/nar/19.14.3998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Lehmann J. M., Moore L. B., Smith-Oliver T. A., Wilkison W. O., Willson T. M., Kliewer S. A. An antidiabetic thiazolidinedione is a high affinity ligand for peroxisome proliferator-activated receptor gamma (PPAR gamma). J Biol Chem. 1995 Jun 2;270(22):12953–12956. doi: 10.1074/jbc.270.22.12953. [DOI] [PubMed] [Google Scholar]
  15. Levak-Frank S., Radner H., Walsh A., Stollberger R., Knipping G., Hoefler G., Sattler W., Weinstock P. H., Breslow J. L., Zechner R. Muscle-specific overexpression of lipoprotein lipase causes a severe myopathy characterized by proliferation of mitochondria and peroxisomes in transgenic mice. J Clin Invest. 1995 Aug;96(2):976–986. doi: 10.1172/JCI118145. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Nakamura K., Handa S. Coomassie brilliant blue staining of lipids on thin-layer plates. Anal Biochem. 1984 Nov 1;142(2):406–410. doi: 10.1016/0003-2697(84)90484-6. [DOI] [PubMed] [Google Scholar]
  17. Polonsky K. S. Lilly Lecture 1994. The beta-cell in diabetes: from molecular genetics to clinical research. Diabetes. 1995 Jun;44(6):705–717. doi: 10.2337/diab.44.6.705. [DOI] [PubMed] [Google Scholar]
  18. Reaven G. M. The fourth musketeer--from Alexandre Dumas to Claude Bernard. Diabetologia. 1995 Jan;38(1):3–13. doi: 10.1007/BF02369347. [DOI] [PubMed] [Google Scholar]
  19. Robert J. J., Magre J., Reynet C., Darmaun D., Picard J., Capeau J. In vivo and in vitro characterization of insulin resistance in three cases of lipoatrophic diabetes. Diabete Metab. 1990 May-Jun;16(3):240–247. [PubMed] [Google Scholar]
  20. Roden M., Price T. B., Perseghin G., Petersen K. F., Rothman D. L., Cline G. W., Shulman G. I. Mechanism of free fatty acid-induced insulin resistance in humans. J Clin Invest. 1996 Jun 15;97(12):2859–2865. doi: 10.1172/JCI118742. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Ross S. R., Graves R. A., Spiegelman B. M. Targeted expression of a toxin gene to adipose tissue: transgenic mice resistant to obesity. Genes Dev. 1993 Jul;7(7B):1318–1324. doi: 10.1101/gad.7.7b.1318. [DOI] [PubMed] [Google Scholar]
  22. Saltiel A. R., Olefsky J. M. Thiazolidinediones in the treatment of insulin resistance and type II diabetes. Diabetes. 1996 Dec;45(12):1661–1669. doi: 10.2337/diab.45.12.1661. [DOI] [PubMed] [Google Scholar]
  23. Shimabukuro M., Koyama K., Chen G., Wang M. Y., Trieu F., Lee Y., Newgard C. B., Unger R. H. Direct antidiabetic effect of leptin through triglyceride depletion of tissues. Proc Natl Acad Sci U S A. 1997 Apr 29;94(9):4637–4641. doi: 10.1073/pnas.94.9.4637. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Spiegelman B. M., Flier J. S. Adipogenesis and obesity: rounding out the big picture. Cell. 1996 Nov 1;87(3):377–389. doi: 10.1016/s0092-8674(00)81359-8. [DOI] [PubMed] [Google Scholar]
  25. Sreenan S., Sturis J., Pugh W., Burant C. F., Polonsky K. S. Prevention of hyperglycemia in the Zucker diabetic fatty rat by treatment with metformin or troglitazone. Am J Physiol. 1996 Oct;271(4 Pt 1):E742–E747. doi: 10.1152/ajpendo.1996.271.4.E742. [DOI] [PubMed] [Google Scholar]
  26. Storlien L. H., Jenkins A. B., Chisholm D. J., Pascoe W. S., Khouri S., Kraegen E. W. Influence of dietary fat composition on development of insulin resistance in rats. Relationship to muscle triglyceride and omega-3 fatty acids in muscle phospholipid. Diabetes. 1991 Feb;40(2):280–289. doi: 10.2337/diab.40.2.280. [DOI] [PubMed] [Google Scholar]
  27. Sturis J., Pugh W. L., Tang J., Polonsky K. S. Prevention of diabetes does not completely prevent insulin secretory defects in the ZDF rat. Am J Physiol. 1995 Oct;269(4 Pt 1):E786–E792. doi: 10.1152/ajpendo.1995.269.4.E786. [DOI] [PubMed] [Google Scholar]
  28. Tai T. A., Jennermann C., Brown K. K., Oliver B. B., MacGinnitie M. A., Wilkison W. O., Brown H. R., Lehmann J. M., Kliewer S. A., Morris D. C. Activation of the nuclear receptor peroxisome proliferator-activated receptor gamma promotes brown adipocyte differentiation. J Biol Chem. 1996 Nov 22;271(47):29909–29914. doi: 10.1074/jbc.271.47.29909. [DOI] [PubMed] [Google Scholar]
  29. Tokuyama Y., Sturis J., DePaoli A. M., Takeda J., Stoffel M., Tang J., Sun X., Polonsky K. S., Bell G. I. Evolution of beta-cell dysfunction in the male Zucker diabetic fatty rat. Diabetes. 1995 Dec;44(12):1447–1457. doi: 10.2337/diab.44.12.1447. [DOI] [PubMed] [Google Scholar]
  30. Tontonoz P., Hu E., Graves R. A., Budavari A. I., Spiegelman B. M. mPPAR gamma 2: tissue-specific regulator of an adipocyte enhancer. Genes Dev. 1994 May 15;8(10):1224–1234. doi: 10.1101/gad.8.10.1224. [DOI] [PubMed] [Google Scholar]
  31. Vidal-Puig A., Jimenez-Liñan M., Lowell B. B., Hamann A., Hu E., Spiegelman B., Flier J. S., Moller D. E. Regulation of PPAR gamma gene expression by nutrition and obesity in rodents. J Clin Invest. 1996 Jun 1;97(11):2553–2561. doi: 10.1172/JCI118703. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Willson T. M., Cobb J. E., Cowan D. J., Wiethe R. W., Correa I. D., Prakash S. R., Beck K. D., Moore L. B., Kliewer S. A., Lehmann J. M. The structure-activity relationship between peroxisome proliferator-activated receptor gamma agonism and the antihyperglycemic activity of thiazolidinediones. J Med Chem. 1996 Feb 2;39(3):665–668. doi: 10.1021/jm950395a. [DOI] [PubMed] [Google Scholar]
  33. Yki-Järvinen H. Glucose toxicity. Endocr Rev. 1992 Aug;13(3):415–431. doi: 10.1210/edrv-13-3-415. [DOI] [PubMed] [Google Scholar]
  34. Zhang Y., Proenca R., Maffei M., Barone M., Leopold L., Friedman J. M. Positional cloning of the mouse obese gene and its human homologue. Nature. 1994 Dec 1;372(6505):425–432. doi: 10.1038/372425a0. [DOI] [PubMed] [Google Scholar]
  35. Zhu Y., Alvares K., Huang Q., Rao M. S., Reddy J. K. Cloning of a new member of the peroxisome proliferator-activated receptor gene family from mouse liver. J Biol Chem. 1993 Dec 25;268(36):26817–26820. [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES