Abstract
The role of nitric oxide in obliterative bronchiolitis development, i.e., chronic rejection, was investigated in the heterotopic rat tracheal allograft model. An increase in the intragraft inducible nitric oxide synthase (iNOS) mRNA and mononuclear inflammatory cell iNOS immunoreactivity was demonstrated during progressive loss of respiratory epithelium and airway occlusion in nontreated allografts compared to syngeneic grafts. In nontreated allografts, however, intragraft nitric oxide production was decreased, most likely because of loss of iNOS epithelial expression. Treatment with aminoguanidine, a preferential inhibitor of inducible nitric oxide synthase, was associated with enhanced proliferation of alpha-smooth muscle actin immunoreactive cells and the intensity of obliterative bronchiolitis early after transplantation. Aminoguanidine treatment did not affect iNOS mRNA synthesis or intragraft nitric oxide production, but decreased iNOS immunoreactivity in smooth muscle cells. Treatment with L-arginine, a precursor of nitric oxide, significantly reduced obliterative changes. L-arginine supplementation enhanced intragraft iNOS mRNA synthesis and iNOS immunoreactivity in capillary endothelial and smooth muscle cells as well as intragraft nitric oxide production. Immunohistochemical analysis of allografts showed that neither iNOS inhibition nor supplementation of the nitric oxide pathway affected the number of graft-infiltrating CD4+ and CD8+ T cells, ED1+ and ED3+ macrophages, immune activation with expression of IL-2R or MHC class II, or production of macrophage or Th1 cytokines. In contrast, L-arginine treatment was associated with increased staining for Th2 cytokines IL-4 and IL-10. In conclusion, this study demonstrates that nitric oxide has a protective role in obliterative bronchiolitis development in this model, and suggests that nitric oxide either directly or indirectly inhibits smooth muscle cell proliferation and modulates immune response towards Th2 cytokines.
Full Text
The Full Text of this article is available as a PDF (11.9 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Akyürek L. M., Fellström B. C., Yan Z. Q., Hansson G. K., Funa K., Larsson E. Inducible and endothelial nitric oxide synthase expression during development of transplant arteriosclerosis in rat aortic grafts. Am J Pathol. 1996 Dec;149(6):1981–1990. [PMC free article] [PubMed] [Google Scholar]
- Barnes P. J. Nitric oxide and airway disease. Ann Med. 1995 Jun;27(3):389–393. doi: 10.3109/07853899509002592. [DOI] [PubMed] [Google Scholar]
- Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
- Cooke J. P., Singer A. H., Tsao P., Zera P., Rowan R. A., Billingham M. E. Antiatherogenic effects of L-arginine in the hypercholesterolemic rabbit. J Clin Invest. 1992 Sep;90(3):1168–1172. doi: 10.1172/JCI115937. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cooke J. P., Tsao P. S. Cytoprotective effects of nitric oxide. Circulation. 1993 Nov;88(5 Pt 1):2451–2454. doi: 10.1161/01.cir.88.5.2451. [DOI] [PubMed] [Google Scholar]
- Garg U. C., Hassid A. Nitric oxide-generating vasodilators and 8-bromo-cyclic guanosine monophosphate inhibit mitogenesis and proliferation of cultured rat vascular smooth muscle cells. J Clin Invest. 1989 May;83(5):1774–1777. doi: 10.1172/JCI114081. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gregory C. R., Cooke J. P., Patz J. D., Berryman E. R., Shorthouse R., Morris R. E. Enhanced nitric oxide production induced by the administration of L-arginine does not inhibit arterial neointimal formation after overwhelming alloimmune injury. J Heart Lung Transplant. 1996 Jan;15(1 Pt 1):58–66. [PubMed] [Google Scholar]
- Guo F. H., De Raeve H. R., Rice T. W., Stuehr D. J., Thunnissen F. B., Erzurum S. C. Continuous nitric oxide synthesis by inducible nitric oxide synthase in normal human airway epithelium in vivo. Proc Natl Acad Sci U S A. 1995 Aug 15;92(17):7809–7813. doi: 10.1073/pnas.92.17.7809. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hamid Q., Springall D. R., Riveros-Moreno V., Chanez P., Howarth P., Redington A., Bousquet J., Godard P., Holgate S., Polak J. M. Induction of nitric oxide synthase in asthma. Lancet. 1993 Dec 18;342(8886-8887):1510–1513. doi: 10.1016/s0140-6736(05)80083-2. [DOI] [PubMed] [Google Scholar]
- Hertz M. I., Henke C. A., Nakhleh R. E., Harmon K. R., Marinelli W. A., Fox J. M., Kubo S. H., Shumway S. J., Bolman R. M., 3rd, Bitterman P. B. Obliterative bronchiolitis after lung transplantation: a fibroproliferative disorder associated with platelet-derived growth factor. Proc Natl Acad Sci U S A. 1992 Nov 1;89(21):10385–10389. doi: 10.1073/pnas.89.21.10385. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hertz M. I., Jessurun J., King M. B., Savik S. K., Murray J. J. Reproduction of the obliterative bronchiolitis lesion after heterotopic transplantation of mouse airways. Am J Pathol. 1993 Jun;142(6):1945–1951. [PMC free article] [PubMed] [Google Scholar]
- Hou J., Kato H., Cohen R. A., Chobanian A. V., Brecher P. Angiotensin II-induced cardiac fibrosis in the rat is increased by chronic inhibition of nitric oxide synthase. J Clin Invest. 1995 Nov;96(5):2469–2477. doi: 10.1172/JCI118305. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kariya K., Kawahara Y., Araki S., Fukuzaki H., Takai Y. Antiproliferative action of cyclic GMP-elevating vasodilators in cultured rabbit aortic smooth muscle cells. Atherosclerosis. 1989 Dec;80(2):143–147. doi: 10.1016/0021-9150(89)90022-1. [DOI] [PubMed] [Google Scholar]
- King M. B., Jessurun J., Savik S. K., Murray J. J., Hertz M. I. Cyclosporine reduces development of obliterative bronchiolitis in a murine heterotopic airway model. Transplantation. 1997 Feb 27;63(4):528–532. doi: 10.1097/00007890-199702270-00007. [DOI] [PubMed] [Google Scholar]
- Koskinen P. K., Kallio E. A., Bruggeman C. A., Lemström K. B. Cytomegalovirus infection enhances experimental obliterative bronchiolitis in rat tracheal allografts. Am J Respir Crit Care Med. 1997 Jun;155(6):2078–2088. doi: 10.1164/ajrccm.155.6.9196118. [DOI] [PubMed] [Google Scholar]
- Koskinen P. K., Kallio E. A., Krebs R., Lemström K. B. A dose-dependent inhibitory effect of cyclosporine A on obliterative bronchiolitis of rat tracheal allografts. Am J Respir Crit Care Med. 1997 Jan;155(1):303–312. doi: 10.1164/ajrccm.155.1.9001329. [DOI] [PubMed] [Google Scholar]
- Kourembanas S., McQuillan L. P., Leung G. K., Faller D. V. Nitric oxide regulates the expression of vasoconstrictors and growth factors by vascular endothelium under both normoxia and hypoxia. J Clin Invest. 1993 Jul;92(1):99–104. doi: 10.1172/JCI116604. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kubes P., Suzuki M., Granger D. N. Nitric oxide: an endogenous modulator of leukocyte adhesion. Proc Natl Acad Sci U S A. 1991 Jun 1;88(11):4651–4655. doi: 10.1073/pnas.88.11.4651. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Langrehr J. M., Murase N., Markus P. M., Cai X., Neuhaus P., Schraut W., Simmons R. L., Hoffman R. A. Nitric oxide production in host-versus-graft and graft-versus-host reactions in the rat. J Clin Invest. 1992 Aug;90(2):679–683. doi: 10.1172/JCI115911. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Langrehr J. M., White D. A., Hoffman R. A., Simmons R. L. Macrophages produce nitric oxide at allograft sites. Ann Surg. 1993 Aug;218(2):159–166. doi: 10.1097/00000658-199308000-00007. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lemström K. B., Aho P. T., Bruggeman C. A., Häyry P. J. Cytomegalovirus infection enhances mRNA expression of platelet-derived growth factor-BB and transforming growth factor-beta 1 in rat aortic allografts. Possible mechanism for cytomegalovirus-enhanced graft arteriosclerosis. Arterioscler Thromb. 1994 Dec;14(12):2043–2052. doi: 10.1161/01.atv.14.12.2043. [DOI] [PubMed] [Google Scholar]
- Lemström K., Koskinen P., Häyry P. Molecular mechanisms of chronic renal allograft rejection. Kidney Int Suppl. 1995 Dec;52:S2–10. [PubMed] [Google Scholar]
- McNamara D. B., Bedi B., Aurora H., Tena L., Ignarro L. J., Kadowitz P. J., Akers D. L. L-arginine inhibits balloon catheter-induced intimal hyperplasia. Biochem Biophys Res Commun. 1993 May 28;193(1):291–296. doi: 10.1006/bbrc.1993.1622. [DOI] [PubMed] [Google Scholar]
- Misko T. P., Moore W. M., Kasten T. P., Nickols G. A., Corbett J. A., Tilton R. G., McDaniel M. L., Williamson J. R., Currie M. G. Selective inhibition of the inducible nitric oxide synthase by aminoguanidine. Eur J Pharmacol. 1993 Mar 16;233(1):119–125. doi: 10.1016/0014-2999(93)90357-n. [DOI] [PubMed] [Google Scholar]
- Moncada S., Higgs A. The L-arginine-nitric oxide pathway. N Engl J Med. 1993 Dec 30;329(27):2002–2012. doi: 10.1056/NEJM199312303292706. [DOI] [PubMed] [Google Scholar]
- Moncada S., Higgs E. A. Molecular mechanisms and therapeutic strategies related to nitric oxide. FASEB J. 1995 Oct;9(13):1319–1330. [PubMed] [Google Scholar]
- Morris R. E., Huang X., Gregory C. R., Billingham M. E., Rowan R., Shorthouse R., Berry G. J. Studies in experimental models of chronic rejection: use of rapamycin (sirolimus) and isoxazole derivatives (leflunomide and its analogue) for the suppression of graft vascular disease and obliterative bronchiolitis. Transplant Proc. 1995 Jun;27(3):2068–2069. [PubMed] [Google Scholar]
- Moshage H., Kok B., Huizenga J. R., Jansen P. L. Nitrite and nitrate determinations in plasma: a critical evaluation. Clin Chem. 1995 Jun;41(6 Pt 1):892–896. [PubMed] [Google Scholar]
- Murohara T., Parkinson S. J., Waldman S. A., Lefer A. M. Inhibition of nitric oxide biosynthesis promotes P-selectin expression in platelets. Role of protein kinase C. Arterioscler Thromb Vasc Biol. 1995 Nov;15(11):2068–2075. doi: 10.1161/01.atv.15.11.2068. [DOI] [PubMed] [Google Scholar]
- Naruse K., Shimizu K., Muramatsu M., Toki Y., Miyazaki Y., Okumura K., Hashimoto H., Ito T. Long-term inhibition of NO synthesis promotes atherosclerosis in the hypercholesterolemic rabbit thoracic aorta. PGH2 does not contribute to impaired endothelium-dependent relaxation. Arterioscler Thromb. 1994 May;14(5):746–752. doi: 10.1161/01.atv.14.5.746. [DOI] [PubMed] [Google Scholar]
- Nathan C. Nitric oxide as a secretory product of mammalian cells. FASEB J. 1992 Sep;6(12):3051–3064. [PubMed] [Google Scholar]
- Pinsky D. J., Oz M. C., Koga S., Taha Z., Broekman M. J., Marcus A. J., Liao H., Naka Y., Brett J., Cannon P. J. Cardiac preservation is enhanced in a heterotopic rat transplant model by supplementing the nitric oxide pathway. J Clin Invest. 1994 May;93(5):2291–2297. doi: 10.1172/JCI117230. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Radomski M. W., Palmer R. M., Moncada S. An L-arginine/nitric oxide pathway present in human platelets regulates aggregation. Proc Natl Acad Sci U S A. 1990 Jul;87(13):5193–5197. doi: 10.1073/pnas.87.13.5193. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Russell M. E., Wallace A. F., Wyner L. R., Newell J. B., Karnovsky M. J. Upregulation and modulation of inducible nitric oxide synthase in rat cardiac allografts with chronic rejection and transplant arteriosclerosis. Circulation. 1995 Aug 1;92(3):457–464. doi: 10.1161/01.cir.92.3.457. [DOI] [PubMed] [Google Scholar]
- Sayegh M. H., Akalin E., Hancock W. W., Russell M. E., Carpenter C. B., Linsley P. S., Turka L. A. CD28-B7 blockade after alloantigenic challenge in vivo inhibits Th1 cytokines but spares Th2. J Exp Med. 1995 May 1;181(5):1869–1874. doi: 10.1084/jem.181.5.1869. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schmidt H. H., Warner T. D., Nakane M., Förstermann U., Murad F. Regulation and subcellular location of nitrogen oxide synthases in RAW264.7 macrophages. Mol Pharmacol. 1992 Apr;41(4):615–624. [PubMed] [Google Scholar]
- Sessa W. C. The nitric oxide synthase family of proteins. J Vasc Res. 1994 May-Jun;31(3):131–143. doi: 10.1159/000159039. [DOI] [PubMed] [Google Scholar]
- Shiraishi T., DeMeester S. R., Worrall N. K., Ritter J. H., Misko T. P., Ferguson T. B., Jr, Cooper J. D., Patterson G. A. Inhibition of inducible nitric oxide synthase ameliorates rat lung allograft rejection. J Thorac Cardiovasc Surg. 1995 Nov;110(5):1449–1460. doi: 10.1016/S0022-5223(95)70068-4. [DOI] [PubMed] [Google Scholar]
- Taylor-Robinson A. W., Liew F. Y., Severn A., Xu D., McSorley S. J., Garside P., Padron J., Phillips R. S. Regulation of the immune response by nitric oxide differentially produced by T helper type 1 and T helper type 2 cells. Eur J Immunol. 1994 Apr;24(4):980–984. doi: 10.1002/eji.1830240430. [DOI] [PubMed] [Google Scholar]
- Tsuji M., Dimov V. B., Yoshida T. In vivo expression of monokine and inducible nitric oxide synthase in experimentally induced pulmonary granulomatous inflammation. Evidence for sequential production of interleukin-1, inducible nitric oxide synthase, and tumor necrosis factor. Am J Pathol. 1995 Oct;147(4):1001–1015. [PMC free article] [PubMed] [Google Scholar]
- Uyama T., Winter J. B., Groen G., Wildevuur C. R., Monden Y., Prop J. Late airway changes caused by chronic rejection in rat lung allografts. Transplantation. 1992 Nov;54(5):809–812. doi: 10.1097/00007890-199211000-00008. [DOI] [PubMed] [Google Scholar]
- Wei X. Q., Charles I. G., Smith A., Ure J., Feng G. J., Huang F. P., Xu D., Muller W., Moncada S., Liew F. Y. Altered immune responses in mice lacking inducible nitric oxide synthase. Nature. 1995 Jun 1;375(6530):408–411. doi: 10.1038/375408a0. [DOI] [PubMed] [Google Scholar]
- Worrall N. K., Lazenby W. D., Misko T. P., Lin T. S., Rodi C. P., Manning P. T., Tilton R. G., Williamson J. R., Ferguson T. B., Jr Modulation of in vivo alloreactivity by inhibition of inducible nitric oxide synthase. J Exp Med. 1995 Jan 1;181(1):63–70. doi: 10.1084/jem.181.1.63. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yan Z. Q., Hansson G. K., Skoogh B. E., Lötvall J. O. Induction of nitric oxide synthase in a model of allergic occupational asthma. Allergy. 1995 Sep;50(9):760–764. doi: 10.1111/j.1398-9995.1995.tb01221.x. [DOI] [PubMed] [Google Scholar]
- Yang X., Chowdhury N., Cai B., Brett J., Marboe C., Sciacca R. R., Michler R. E., Cannon P. J. Induction of myocardial nitric oxide synthase by cardiac allograft rejection. J Clin Invest. 1994 Aug;94(2):714–721. doi: 10.1172/JCI117390. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yousem S. A., Berry G. J., Cagle P. T., Chamberlain D., Husain A. N., Hruban R. H., Marchevsky A., Ohori N. P., Ritter J., Stewart S. Revision of the 1990 working formulation for the classification of pulmonary allograft rejection: Lung Rejection Study Group. J Heart Lung Transplant. 1996 Jan;15(1 Pt 1):1–15. [PubMed] [Google Scholar]
- al-Dossari G. A., Jessurun J., Bolman R. M., 3rd, Kshettry V. R., King M. B., Murray J. J., Hertz M. I. Pathogenesis of obliterative bronchiolitis. Possible roles of platelet-derived growth factor and basic fibroblast growth factor. Transplantation. 1995 Jan 15;59(1):143–145. [PubMed] [Google Scholar]