Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1997 Dec 15;100(12):2995–3004. doi: 10.1172/JCI119853

Immunohistochemical colocalization of glycoxidation products and lipid peroxidation products in diabetic renal glomerular lesions. Implication for glycoxidative stress in the pathogenesis of diabetic nephropathy.

K Horie 1, T Miyata 1, K Maeda 1, S Miyata 1, S Sugiyama 1, H Sakai 1, C van Ypersole de Strihou 1, V M Monnier 1, J L Witztum 1, K Kurokawa 1
PMCID: PMC508511  PMID: 9399945

Abstract

Advanced glycation end products (AGEs) include a variety of protein adducts whose accumulation alters the structure and function of tissue proteins and stimulates cellular responses. They have been implicated in tissue damage associated with diabetic complications. To assess the possible link between AGE accumulation and the development of diabetic nephropathy (DN), we have examined the immunohistochemical localization of various AGE structures postulated to date, i.e., pentosidine, Nepsilon-(carboxymethyl)lysine (CML), and pyrraline, in diabetic and control kidneys. CML and pentosidine accumulate in the expanded mesangial matrix and thickened glomerular capillary walls of early DN and in nodular lesions and arterial walls of advanced DN, but were absent in control kidneys. By contrast, pyrraline was not found within diabetic glomeruli but was detected in the interstitial connective tissue of both normal and diabetic kidneys. Although the distribution of pyrraline was topographically identical to type III collagen, distribution of pentosidine and CML was not specific for collagen type, suggesting that difference in matrix protein composition per se could not explain heterogeneous AGE localization. Since oxidation is linked closely to the formation of pentosidine and CML, we also immunostained malondialdehyde (MDA), a lipid peroxidation product whose formation is accelerated by oxidative stress, assuming that local oxidative stress may serve as a mechanism of pentosidine and CML accumulation. Consistent with our assumption, diabetic nodular lesions were stained positive for MDA. These findings show that AGE localization in DN varies according to AGE structure, and suggest that the colocalization of markers of glycoxidation (pentosidine and CML) with a marker of lipid peroxidation reflects a local oxidative stress in association with the pathogenesis of diabetic glomerular lesions. Thus, glycoxidation markers may serve as useful biomarkers of oxidative damage in DN.

Full Text

The Full Text of this article is available as a PDF (691.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ahmed M. U., Thorpe S. R., Baynes J. W. Identification of N epsilon-carboxymethyllysine as a degradation product of fructoselysine in glycated protein. J Biol Chem. 1986 Apr 15;261(11):4889–4894. [PubMed] [Google Scholar]
  2. Anderson M. M., Hazen S. L., Hsu F. F., Heinecke J. W. Human neutrophils employ the myeloperoxidase-hydrogen peroxide-chloride system to convert hydroxy-amino acids into glycolaldehyde, 2-hydroxypropanal, and acrolein. A mechanism for the generation of highly reactive alpha-hydroxy and alpha,beta-unsaturated aldehydes by phagocytes at sites of inflammation. J Clin Invest. 1997 Feb 1;99(3):424–432. doi: 10.1172/JCI119176. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bangstad H. J., Osterby R., Dahl-Jørgensen K., Berg K. J., Hartmann A., Hanssen K. F. Improvement of blood glucose control in IDDM patients retards the progression of morphological changes in early diabetic nephropathy. Diabetologia. 1994 May;37(5):483–490. doi: 10.1007/s001250050136. [DOI] [PubMed] [Google Scholar]
  4. Baynes J. W. Role of oxidative stress in development of complications in diabetes. Diabetes. 1991 Apr;40(4):405–412. doi: 10.2337/diab.40.4.405. [DOI] [PubMed] [Google Scholar]
  5. Beisswenger P. J., Moore L. L., Brinck-Johnsen T., Curphey T. J. Increased collagen-linked pentosidine levels and advanced glycosylation end products in early diabetic nephropathy. J Clin Invest. 1993 Jul;92(1):212–217. doi: 10.1172/JCI116552. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Brett J., Schmidt A. M., Yan S. D., Zou Y. S., Weidman E., Pinsky D., Nowygrod R., Neeper M., Przysiecki C., Shaw A. Survey of the distribution of a newly characterized receptor for advanced glycation end products in tissues. Am J Pathol. 1993 Dec;143(6):1699–1712. [PMC free article] [PubMed] [Google Scholar]
  7. Brownlee M., Cerami A., Vlassara H. Advanced glycosylation end products in tissue and the biochemical basis of diabetic complications. N Engl J Med. 1988 May 19;318(20):1315–1321. doi: 10.1056/NEJM198805193182007. [DOI] [PubMed] [Google Scholar]
  8. Diamond J. R. The role of reactive oxygen species in animal models of glomerular disease. Am J Kidney Dis. 1992 Mar;19(3):292–300. doi: 10.1016/s0272-6386(13)80013-3. [DOI] [PubMed] [Google Scholar]
  9. Doi T., Vlassara H., Kirstein M., Yamada Y., Striker G. E., Striker L. J. Receptor-specific increase in extracellular matrix production in mouse mesangial cells by advanced glycosylation end products is mediated via platelet-derived growth factor. Proc Natl Acad Sci U S A. 1992 Apr 1;89(7):2873–2877. doi: 10.1073/pnas.89.7.2873. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Du Yan S., Zhu H., Fu J., Yan S. F., Roher A., Tourtellotte W. W., Rajavashisth T., Chen X., Godman G. C., Stern D. Amyloid-beta peptide-receptor for advanced glycation endproduct interaction elicits neuronal expression of macrophage-colony stimulating factor: a proinflammatory pathway in Alzheimer disease. Proc Natl Acad Sci U S A. 1997 May 13;94(10):5296–5301. doi: 10.1073/pnas.94.10.5296. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Dunn J. A., Ahmed M. U., Murtiashaw M. H., Richardson J. M., Walla M. D., Thorpe S. R., Baynes J. W. Reaction of ascorbate with lysine and protein under autoxidizing conditions: formation of N epsilon-(carboxymethyl)lysine by reaction between lysine and products of autoxidation of ascorbate. Biochemistry. 1990 Dec 11;29(49):10964–10970. doi: 10.1021/bi00501a014. [DOI] [PubMed] [Google Scholar]
  12. Dyer D. G., Blackledge J. A., Thorpe S. R., Baynes J. W. Formation of pentosidine during nonenzymatic browning of proteins by glucose. Identification of glucose and other carbohydrates as possible precursors of pentosidine in vivo. J Biol Chem. 1991 Jun 25;266(18):11654–11660. [PubMed] [Google Scholar]
  13. Dyer D. G., Dunn J. A., Thorpe S. R., Bailie K. E., Lyons T. J., McCance D. R., Baynes J. W. Accumulation of Maillard reaction products in skin collagen in diabetes and aging. J Clin Invest. 1993 Jun;91(6):2463–2469. doi: 10.1172/JCI116481. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Falk R. J., Scheinman J. I., Mauer S. M., Michael A. F. Polyantigenic expansion of basement membrane constituents in diabetic nephropathy. Diabetes. 1983 May;32 (Suppl 2):34–39. doi: 10.2337/diab.32.2.s34. [DOI] [PubMed] [Google Scholar]
  15. Glomb M. A., Monnier V. M. Mechanism of protein modification by glyoxal and glycolaldehyde, reactive intermediates of the Maillard reaction. J Biol Chem. 1995 Apr 28;270(17):10017–10026. doi: 10.1074/jbc.270.17.10017. [DOI] [PubMed] [Google Scholar]
  16. Grandhee S. K., Monnier V. M. Mechanism of formation of the Maillard protein cross-link pentosidine. Glucose, fructose, and ascorbate as pentosidine precursors. J Biol Chem. 1991 Jun 25;266(18):11649–11653. [PubMed] [Google Scholar]
  17. Gugliucci A., Bendayan M. Renal fate of circulating advanced glycated end products (AGE): evidence for reabsorption and catabolism of AGE-peptides by renal proximal tubular cells. Diabetologia. 1996 Feb;39(2):149–160. doi: 10.1007/BF00403957. [DOI] [PubMed] [Google Scholar]
  18. Horiuchi S., Araki N., Morino Y. Immunochemical approach to characterize advanced glycation end products of the Maillard reaction. Evidence for the presence of a common structure. J Biol Chem. 1991 Apr 25;266(12):7329–7332. [PubMed] [Google Scholar]
  19. Houglum K., Filip M., Witztum J. L., Chojkier M. Malondialdehyde and 4-hydroxynonenal protein adducts in plasma and liver of rats with iron overload. J Clin Invest. 1990 Dec;86(6):1991–1998. doi: 10.1172/JCI114934. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Hunt J. V., Dean R. T., Wolff S. P. Hydroxyl radical production and autoxidative glycosylation. Glucose autoxidation as the cause of protein damage in the experimental glycation model of diabetes mellitus and ageing. Biochem J. 1988 Nov 15;256(1):205–212. doi: 10.1042/bj2560205. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Iida Y., Miyata T., Inagi R., Sugiyama S., Maeda K. Beta 2-microglobulin modified with advanced glycation end products induces interleukin-6 from human macrophages: role in the pathogenesis of hemodialysis-associated amyloidosis. Biochem Biophys Res Commun. 1994 Jun 30;201(3):1235–1241. doi: 10.1006/bbrc.1994.1837. [DOI] [PubMed] [Google Scholar]
  22. Ikeda K., Higashi T., Sano H., Jinnouchi Y., Yoshida M., Araki T., Ueda S., Horiuchi S. N (epsilon)-(carboxymethyl)lysine protein adduct is a major immunological epitope in proteins modified with advanced glycation end products of the Maillard reaction. Biochemistry. 1996 Jun 18;35(24):8075–8083. doi: 10.1021/bi9530550. [DOI] [PubMed] [Google Scholar]
  23. Johnson R. J., Lovett D., Lehrer R. I., Couser W. G., Klebanoff S. J. Role of oxidants and proteases in glomerular injury. Kidney Int. 1994 Feb;45(2):352–359. doi: 10.1038/ki.1994.45. [DOI] [PubMed] [Google Scholar]
  24. Kirstein M., Brett J., Radoff S., Ogawa S., Stern D., Vlassara H. Advanced protein glycosylation induces transendothelial human monocyte chemotaxis and secretion of platelet-derived growth factor: role in vascular disease of diabetes and aging. Proc Natl Acad Sci U S A. 1990 Nov;87(22):9010–9014. doi: 10.1073/pnas.87.22.9010. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Makino H., Shikata K., Wieslander J., Wada J., Kashihara N., Yoshioka K., Ota Z. Localization of fibril/microfibril and basement membrane collagens in diabetic glomerulosclerosis in type 2 diabetes. Diabet Med. 1994 Apr;11(3):304–311. doi: 10.1111/j.1464-5491.1994.tb00276.x. [DOI] [PubMed] [Google Scholar]
  26. McCance D. R., Dyer D. G., Dunn J. A., Bailie K. E., Thorpe S. R., Baynes J. W., Lyons T. J. Maillard reaction products and their relation to complications in insulin-dependent diabetes mellitus. J Clin Invest. 1993 Jun;91(6):2470–2478. doi: 10.1172/JCI116482. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Miyata S., Monnier V. Immunohistochemical detection of advanced glycosylation end products in diabetic tissues using monoclonal antibody to pyrraline. J Clin Invest. 1992 Apr;89(4):1102–1112. doi: 10.1172/JCI115690. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Miyata T., Hori O., Zhang J., Yan S. D., Ferran L., Iida Y., Schmidt A. M. The receptor for advanced glycation end products (RAGE) is a central mediator of the interaction of AGE-beta2microglobulin with human mononuclear phagocytes via an oxidant-sensitive pathway. Implications for the pathogenesis of dialysis-related amyloidosis. J Clin Invest. 1996 Sep 1;98(5):1088–1094. doi: 10.1172/JCI118889. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Miyata T., Iida Y., Ueda Y., Shinzato T., Seo H., Monnier V. M., Maeda K., Wada Y. Monocyte/macrophage response to beta 2-microglobulin modified with advanced glycation end products. Kidney Int. 1996 Feb;49(2):538–550. doi: 10.1038/ki.1996.77. [DOI] [PubMed] [Google Scholar]
  30. Miyata T., Inagi R., Iida Y., Sato M., Yamada N., Oda O., Maeda K., Seo H. Involvement of beta 2-microglobulin modified with advanced glycation end products in the pathogenesis of hemodialysis-associated amyloidosis. Induction of human monocyte chemotaxis and macrophage secretion of tumor necrosis factor-alpha and interleukin-1. J Clin Invest. 1994 Feb;93(2):521–528. doi: 10.1172/JCI117002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Miyata T., Oda O., Inagi R., Iida Y., Araki N., Yamada N., Horiuchi S., Taniguchi N., Maeda K., Kinoshita T. beta 2-Microglobulin modified with advanced glycation end products is a major component of hemodialysis-associated amyloidosis. J Clin Invest. 1993 Sep;92(3):1243–1252. doi: 10.1172/JCI116696. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Miyata T., Taneda S., Kawai R., Ueda Y., Horiuchi S., Hara M., Maeda K., Monnier V. M. Identification of pentosidine as a native structure for advanced glycation end products in beta-2-microglobulin-containing amyloid fibrils in patients with dialysis-related amyloidosis. Proc Natl Acad Sci U S A. 1996 Mar 19;93(6):2353–2358. doi: 10.1073/pnas.93.6.2353. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Miyata T., Ueda Y., Shinzato T., Iida Y., Tanaka S., Kurokawa K., van Ypersele de Strihou C., Maeda K. Accumulation of albumin-linked and free-form pentosidine in the circulation of uremic patients with end-stage renal failure: renal implications in the pathophysiology of pentosidine. J Am Soc Nephrol. 1996 Aug;7(8):1198–1206. doi: 10.1681/ASN.V781198. [DOI] [PubMed] [Google Scholar]
  34. Miyata T., Wada Y., Cai Z., Iida Y., Horie K., Yasuda Y., Maeda K., Kurokawa K., van Ypersele de Strihou C. Implication of an increased oxidative stress in the formation of advanced glycation end products in patients with end-stage renal failure. Kidney Int. 1997 Apr;51(4):1170–1181. doi: 10.1038/ki.1997.160. [DOI] [PubMed] [Google Scholar]
  35. Mohan P. S., Carter W. G., Spiro R. G. Occurrence of type VI collagen in extracellular matrix of renal glomeruli and its increase in diabetes. Diabetes. 1990 Jan;39(1):31–37. doi: 10.2337/diacare.39.1.31. [DOI] [PubMed] [Google Scholar]
  36. Monnier V. M., Sell D. R., Nagaraj R. H., Miyata S., Grandhee S., Odetti P., Ibrahim S. A. Maillard reaction-mediated molecular damage to extracellular matrix and other tissue proteins in diabetes, aging, and uremia. Diabetes. 1992 Oct;41 (Suppl 2):36–41. doi: 10.2337/diab.41.2.s36. [DOI] [PubMed] [Google Scholar]
  37. Monnier V. M. Toward a Maillard reaction theory of aging. Prog Clin Biol Res. 1989;304:1–22. [PubMed] [Google Scholar]
  38. Monnier V. M., Vishwanath V., Frank K. E., Elmets C. A., Dauchot P., Kohn R. R. Relation between complications of type I diabetes mellitus and collagen-linked fluorescence. N Engl J Med. 1986 Feb 13;314(7):403–408. doi: 10.1056/NEJM198602133140702. [DOI] [PubMed] [Google Scholar]
  39. Neeper M., Schmidt A. M., Brett J., Yan S. D., Wang F., Pan Y. C., Elliston K., Stern D., Shaw A. Cloning and expression of a cell surface receptor for advanced glycosylation end products of proteins. J Biol Chem. 1992 Jul 25;267(21):14998–15004. [PubMed] [Google Scholar]
  40. Njoroge F. G., Sayre L. M., Monnier V. M. Detection of D-glucose-derived pyrrole compounds during Maillard reaction under physiological conditions. Carbohydr Res. 1987 Sep 15;167:211–220. doi: 10.1016/0008-6215(87)80280-x. [DOI] [PubMed] [Google Scholar]
  41. Palinski W., Ylä-Herttuala S., Rosenfeld M. E., Butler S. W., Socher S. A., Parthasarathy S., Curtiss L. K., Witztum J. L. Antisera and monoclonal antibodies specific for epitopes generated during oxidative modification of low density lipoprotein. Arteriosclerosis. 1990 May-Jun;10(3):325–335. doi: 10.1161/01.atv.10.3.325. [DOI] [PubMed] [Google Scholar]
  42. Portero-Otin M., Nagaraj R. H., Monnier V. M. Chromatographic evidence for pyrraline formation during protein glycation in vitro and in vivo. Biochim Biophys Acta. 1995 Feb 22;1247(1):74–80. doi: 10.1016/0167-4838(94)00209-y. [DOI] [PubMed] [Google Scholar]
  43. Reddy S., Bichler J., Wells-Knecht K. J., Thorpe S. R., Baynes J. W. N epsilon-(carboxymethyl)lysine is a dominant advanced glycation end product (AGE) antigen in tissue proteins. Biochemistry. 1995 Aug 29;34(34):10872–10878. doi: 10.1021/bi00034a021. [DOI] [PubMed] [Google Scholar]
  44. Rosenfeld M. E., Palinski W., Ylä-Herttuala S., Butler S., Witztum J. L. Distribution of oxidation specific lipid-protein adducts and apolipoprotein B in atherosclerotic lesions of varying severity from WHHL rabbits. Arteriosclerosis. 1990 May-Jun;10(3):336–349. doi: 10.1161/01.atv.10.3.336. [DOI] [PubMed] [Google Scholar]
  45. Sell D. R., Lapolla A., Odetti P., Fogarty J., Monnier V. M. Pentosidine formation in skin correlates with severity of complications in individuals with long-standing IDDM. Diabetes. 1992 Oct;41(10):1286–1292. doi: 10.2337/diab.41.10.1286. [DOI] [PubMed] [Google Scholar]
  46. Sell D. R., Monnier V. M. Structure elucidation of a senescence cross-link from human extracellular matrix. Implication of pentoses in the aging process. J Biol Chem. 1989 Dec 25;264(36):21597–21602. [PubMed] [Google Scholar]
  47. Skolnik E. Y., Yang Z., Makita Z., Radoff S., Kirstein M., Vlassara H. Human and rat mesangial cell receptors for glucose-modified proteins: potential role in kidney tissue remodelling and diabetic nephropathy. J Exp Med. 1991 Oct 1;174(4):931–939. doi: 10.1084/jem.174.4.931. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Soulis-Liparota T., Cooper M., Papazoglou D., Clarke B., Jerums G. Retardation by aminoguanidine of development of albuminuria, mesangial expansion, and tissue fluorescence in streptozocin-induced diabetic rat. Diabetes. 1991 Oct;40(10):1328–1334. doi: 10.2337/diab.40.10.1328. [DOI] [PubMed] [Google Scholar]
  49. Vlassara H., Brownlee M., Manogue K. R., Dinarello C. A., Pasagian A. Cachectin/TNF and IL-1 induced by glucose-modified proteins: role in normal tissue remodeling. Science. 1988 Jun 10;240(4858):1546–1548. doi: 10.1126/science.3259727. [DOI] [PubMed] [Google Scholar]
  50. Wells-Knecht K. J., Zyzak D. V., Litchfield J. E., Thorpe S. R., Baynes J. W. Mechanism of autoxidative glycosylation: identification of glyoxal and arabinose as intermediates in the autoxidative modification of proteins by glucose. Biochemistry. 1995 Mar 21;34(11):3702–3709. doi: 10.1021/bi00011a027. [DOI] [PubMed] [Google Scholar]
  51. Wells-Knecht M. C., Thorpe S. R., Baynes J. W. Pathways of formation of glycoxidation products during glycation of collagen. Biochemistry. 1995 Nov 21;34(46):15134–15141. doi: 10.1021/bi00046a020. [DOI] [PubMed] [Google Scholar]
  52. Wolff S. P., Dean R. T. Glucose autoxidation and protein modification. The potential role of 'autoxidative glycosylation' in diabetes. Biochem J. 1987 Jul 1;245(1):243–250. doi: 10.1042/bj2450243. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Yan S. D., Schmidt A. M., Anderson G. M., Zhang J., Brett J., Zou Y. S., Pinsky D., Stern D. Enhanced cellular oxidant stress by the interaction of advanced glycation end products with their receptors/binding proteins. J Biol Chem. 1994 Apr 1;269(13):9889–9897. [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES