Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1997 Dec 15;100(12):3027–3035. doi: 10.1172/JCI119857

Prevention of experimental myasthenia gravis by nasal administration of synthetic acetylcholine receptor T epitope sequences.

P I Karachunski 1, N S Ostlie 1, D K Okita 1, B M Conti-Fine 1
PMCID: PMC508515  PMID: 9399949

Abstract

T cell tolerization prevents and improves T cell-mediated experimental autoimmune diseases. We investigated here whether similar approaches could be used for antibody (Ab)-mediated autoimmune diseases. Myasthenia gravis, caused by IgG Ab against muscle acetylcholine receptor (AChR), is perhaps the best characterized of them. We used an animal model, experimental myasthenia gravis induced in C57Bl/6 mice by immunization with Torpedo acetylcholine receptor (TAChR), to demonstrate that nasal administration of synthetic sequences of the TAChR alpha-subunit- forming epitopes recognized by anti-TAChR CD4+ T helper cells (residues alpha150-169, alpha181-200, and alpha360-378), given before and during immunization with TAChR, causes decreased CD4+ responsiveness to those epitopes and to TAChR, reduced synthesis of anti-TAChR Ab, and prevented experimental myasthenia gravis. These effects were not induced by nasal administration of synthetic epitopes of diphtheria toxin. Secretion of IL-2, IL-4, and IL-10 by spleen T cells from TAChR immunized mice, in response to challenge with TAChR in vitro, indicated that in sham-tolerized mice only Th1 cells responded to TAChR, while peptide-treated mice had also an AChR-specific Th2 response. The TAChR peptide treatment induced also in vitro anergy to the TAChR of the spleen T cells, which was reversed by IL-2.

Full Text

The Full Text of this article is available as a PDF (213.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abbas A. K., Murphy K. M., Sher A. Functional diversity of helper T lymphocytes. Nature. 1996 Oct 31;383(6603):787–793. doi: 10.1038/383787a0. [DOI] [PubMed] [Google Scholar]
  2. Bellone M., Karachunski P. I., Ostlie N., Lei S., Conti-Tronconi B. M. Preferential pairing of T and B cells for production of antibodies without covalent association of T and B epitopes. Eur J Immunol. 1994 Apr;24(4):799–804. doi: 10.1002/eji.1830240404. [DOI] [PubMed] [Google Scholar]
  3. Bellone M., Ostlie N., Karachunski P., Manfredi A. A., Conti-Tronconi B. M. Cryptic epitopes on the nicotinic acetylcholine receptor are recognized by autoreactive CD4+ cells. J Immunol. 1993 Jul 15;151(2):1025–1038. [PubMed] [Google Scholar]
  4. Bellone M., Ostlie N., Lei S. J., Wu X. D., Conti-Tronconi B. M. The I-Abm12 mutation, which confers resistance to experimental myasthenia gravis, drastically affects the epitope repertoire of murine CD4+ cells sensitized to nicotinic acetylcholine receptor. J Immunol. 1991 Sep 1;147(5):1484–1491. [PubMed] [Google Scholar]
  5. Bellone M., Ostlie N., Lei S., Conti-Tronconi B. M. Experimental myasthenia gravis in congenic mice. Sequence mapping and H-2 restriction of T helper epitopes on the alpha subunits of Torpedo californica and murine acetylcholine receptors. Eur J Immunol. 1991 Oct;21(10):2303–2310. doi: 10.1002/eji.1830211003. [DOI] [PubMed] [Google Scholar]
  6. Chen Y., Inobe J., Kuchroo V. K., Baron J. L., Janeway C. A., Jr, Weiner H. L. Oral tolerance in myelin basic protein T-cell receptor transgenic mice: suppression of autoimmune encephalomyelitis and dose-dependent induction of regulatory cells. Proc Natl Acad Sci U S A. 1996 Jan 9;93(1):388–391. doi: 10.1073/pnas.93.1.388. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Chen Y., Inobe J., Marks R., Gonnella P., Kuchroo V. K., Weiner H. L. Peripheral deletion of antigen-reactive T cells in oral tolerance. Nature. 1995 Jul 13;376(6536):177–180. doi: 10.1038/376177a0. [DOI] [PubMed] [Google Scholar]
  8. Chen Y., Kuchroo V. K., Inobe J., Hafler D. A., Weiner H. L. Regulatory T cell clones induced by oral tolerance: suppression of autoimmune encephalomyelitis. Science. 1994 Aug 26;265(5176):1237–1240. doi: 10.1126/science.7520605. [DOI] [PubMed] [Google Scholar]
  9. Conti-Fine B. M., Lei S., Mclane K. E. Antibodies as tools to study the structure of membrane proteins: the case of the nicotinic acetylcholine receptor. Annu Rev Biophys Biomol Struct. 1996;25:197–229. doi: 10.1146/annurev.bb.25.060196.001213. [DOI] [PubMed] [Google Scholar]
  10. DeSilva D. R., Urdahl K. B., Jenkins M. K. Clonal anergy is induced in vitro by T cell receptor occupancy in the absence of proliferation. J Immunol. 1991 Nov 15;147(10):3261–3267. [PubMed] [Google Scholar]
  11. Dick A. D., Cheng Y. F., McKinnon A., Liversidge J., Forrester J. V. Nasal administration of retinal antigens suppresses the inflammatory response in experimental allergic uveoretinitis. A preliminary report of intranasal induction of tolerance with retinal antigens. Br J Ophthalmol. 1993 Mar;77(3):171–175. doi: 10.1136/bjo.77.3.171. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Diethelm-Okita B. M., Raju R., Okita D. K., Conti-Fine B. M. Epitope repertoire of human CD4+ T cells on tetanus toxin: identification of immunodominant sequence segments. J Infect Dis. 1997 Feb;175(2):382–391. doi: 10.1093/infdis/175.2.382. [DOI] [PubMed] [Google Scholar]
  13. Friedman A., Weiner H. L. Induction of anergy or active suppression following oral tolerance is determined by antigen dosage. Proc Natl Acad Sci U S A. 1994 Jul 5;91(14):6688–6692. doi: 10.1073/pnas.91.14.6688. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Genain C. P., Abel K., Belmar N., Villinger F., Rosenberg D. P., Linington C., Raine C. S., Hauser S. L. Late complications of immune deviation therapy in a nonhuman primate. Science. 1996 Dec 20;274(5295):2054–2057. doi: 10.1126/science.274.5295.2054. [DOI] [PubMed] [Google Scholar]
  15. Gray D. Immunological memory. Annu Rev Immunol. 1993;11:49–77. doi: 10.1146/annurev.iy.11.040193.000405. [DOI] [PubMed] [Google Scholar]
  16. Gregerson D. S., Obritsch W. F., Donoso L. A. Oral tolerance in experimental autoimmune uveoretinitis. Distinct mechanisms of resistance are induced by low dose vs high dose feeding protocols. J Immunol. 1993 Nov 15;151(10):5751–5761. [PubMed] [Google Scholar]
  17. Hetzel C., Lamb J. R. CD4+ T cell-targeted immunomodulation and the therapy of allergic disease. Clin Immunol Immunopathol. 1994 Oct;73(1):1–10. doi: 10.1006/clin.1994.1163. [DOI] [PubMed] [Google Scholar]
  18. Ho P. C., Mutch D. A., Winkel K. D., Saul A. J., Jones G. L., Doran T. J., Rzepczyk C. M. Identification of two promiscuous T cell epitopes from tetanus toxin. Eur J Immunol. 1990 Mar;20(3):477–483. doi: 10.1002/eji.1830200304. [DOI] [PubMed] [Google Scholar]
  19. Houghten R. A. General method for the rapid solid-phase synthesis of large numbers of peptides: specificity of antigen-antibody interaction at the level of individual amino acids. Proc Natl Acad Sci U S A. 1985 Aug;82(15):5131–5135. doi: 10.1073/pnas.82.15.5131. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Husby S., Mestecky J., Moldoveanu Z., Holland S., Elson C. O. Oral tolerance in humans. T cell but not B cell tolerance after antigen feeding. J Immunol. 1994 May 1;152(9):4663–4670. [PubMed] [Google Scholar]
  21. Infante A. J., Thompson P. A., Krolick K. A., Wall K. A. Determinant selection in murine experimental autoimmune myasthenia gravis. Effect of the bm12 mutation on T cell recognition of acetylcholine receptor epitopes. J Immunol. 1991 May 1;146(9):2977–2982. [PubMed] [Google Scholar]
  22. Karachunski P. I., Ostlie N., Bellone M., Infante A. J., Conti-Fine B. M. Mechanisms by which the I-ABM12 mutation influences susceptibility to experimental myasthenia gravis: a study in homozygous and heterozygous mice. Scand J Immunol. 1995 Aug;42(2):215–225. doi: 10.1111/j.1365-3083.1995.tb03648.x. [DOI] [PubMed] [Google Scholar]
  23. Karpus W. J., Kennedy K. J., Smith W. S., Miller S. D. Inhibition of relapsing experimental autoimmune encephalomyelitis in SJL mice by feeding the immunodominant PLP139-151 peptide. J Neurosci Res. 1996 Aug 15;45(4):410–423. doi: 10.1002/(SICI)1097-4547(19960815)45:4<410::AID-JNR10>3.0.CO;2-4. [DOI] [PubMed] [Google Scholar]
  24. Kuper C. F., Koornstra P. J., Hameleers D. M., Biewenga J., Spit B. J., Duijvestijn A. M., van Breda Vriesman P. J., Sminia T. The role of nasopharyngeal lymphoid tissue. Immunol Today. 1992 Jun;13(6):219–224. doi: 10.1016/0167-5699(92)90158-4. [DOI] [PubMed] [Google Scholar]
  25. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  26. Liu L. M., MacPherson G. G. Antigen acquisition by dendritic cells: intestinal dendritic cells acquire antigen administered orally and can prime naive T cells in vivo. J Exp Med. 1993 May 1;177(5):1299–1307. doi: 10.1084/jem.177.5.1299. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Ma C. G., Zhang G. X., Xiao B. G., Link H. Cellular mRNA expression of interferon-gamma (IFN-gamma), IL-4 and transforming growth factor-beta (TGF-beta) in rats nasally tolerized against experimental autoimmune myasthenia gravis (EAMG). Clin Exp Immunol. 1996 Jun;104(3):509–516. doi: 10.1046/j.1365-2249.1996.50755.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Ma C. G., Zhang G. X., Xiao B. G., Link J., Olsson T., Link H. Suppression of experimental autoimmune myasthenia gravis by nasal administration of acetylcholine receptor. J Neuroimmunol. 1995 Apr;58(1):51–60. doi: 10.1016/0165-5728(94)00187-s. [DOI] [PubMed] [Google Scholar]
  29. Ma C. G., Zhang G. X., Xiao B. G., Wang Z. Y., Link J., Olsson T., Link H. Mucosal tolerance to experimental autoimmune myasthenia gravis is associated with down-regulation of AChR-specific IFN-gamma-expressing Th1-like cells and up-regulation of TGF-beta mRNA in mononuclear cells. Ann N Y Acad Sci. 1996 Feb 13;778:273–287. doi: 10.1111/j.1749-6632.1996.tb21135.x. [DOI] [PubMed] [Google Scholar]
  30. Matzinger P. Tolerance, danger, and the extended family. Annu Rev Immunol. 1994;12:991–1045. doi: 10.1146/annurev.iy.12.040194.005015. [DOI] [PubMed] [Google Scholar]
  31. McRae B. L., Vanderlugt C. L., Dal Canto M. C., Miller S. D. Functional evidence for epitope spreading in the relapsing pathology of experimental autoimmune encephalomyelitis. J Exp Med. 1995 Jul 1;182(1):75–85. doi: 10.1084/jem.182.1.75. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Metzler B., Wraith D. C. Inhibition of experimental autoimmune encephalomyelitis by inhalation but not oral administration of the encephalitogenic peptide: influence of MHC binding affinity. Int Immunol. 1993 Sep;5(9):1159–1165. doi: 10.1093/intimm/5.9.1159. [DOI] [PubMed] [Google Scholar]
  33. Miller A., Lider O., Abramsky O., Weiner H. L. Orally administered myelin basic protein in neonates primes for immune responses and enhances experimental autoimmune encephalomyelitis in adult animals. Eur J Immunol. 1994 May;24(5):1026–1032. doi: 10.1002/eji.1830240503. [DOI] [PubMed] [Google Scholar]
  34. Myers C. D. Role of B cell antigen processing and presentation in the humoral immune response. FASEB J. 1991 Aug;5(11):2547–2553. doi: 10.1096/fasebj.5.11.1907935. [DOI] [PubMed] [Google Scholar]
  35. Neutra M. R., Pringault E., Kraehenbuhl J. P. Antigen sampling across epithelial barriers and induction of mucosal immune responses. Annu Rev Immunol. 1996;14:275–300. doi: 10.1146/annurev.immunol.14.1.275. [DOI] [PubMed] [Google Scholar]
  36. Nossal G. J. Choices following antigen entry: antibody formation or immunologic tolerance? Annu Rev Immunol. 1995;13:1–27. doi: 10.1146/annurev.iy.13.040195.000245. [DOI] [PubMed] [Google Scholar]
  37. Panina-Bordignon P., Tan A., Termijtelen A., Demotz S., Corradin G., Lanzavecchia A. Universally immunogenic T cell epitopes: promiscuous binding to human MHC class II and promiscuous recognition by T cells. Eur J Immunol. 1989 Dec;19(12):2237–2242. doi: 10.1002/eji.1830191209. [DOI] [PubMed] [Google Scholar]
  38. Raju R., Navaneetham D., Okita D., Diethelm-Okita B., McCormick D., Conti-Fine B. M. Epitopes for human CD4+ cells on diphtheria toxin: structural features of sequence segments forming epitopes recognized by most subjects. Eur J Immunol. 1995 Dec;25(12):3207–3214. doi: 10.1002/eji.1830251202. [DOI] [PubMed] [Google Scholar]
  39. Schmidt J., Raftery M. A. A simple assay for the study of solubilized acetylcholine receptors. Anal Biochem. 1973 Apr;52(2):349–354. doi: 10.1016/0003-2697(73)90036-5. [DOI] [PubMed] [Google Scholar]
  40. Shenoy M., Oshima M., Atassi M. Z., Christadoss P. Suppression of experimental autoimmune myasthenia gravis by epitope-specific neonatal tolerance to synthetic region alpha 146-162 of acetylcholine receptor. Clin Immunol Immunopathol. 1993 Mar;66(3):230–238. doi: 10.1006/clin.1993.1030. [DOI] [PubMed] [Google Scholar]
  41. Wang Z. Y., Okita D. K., Howard J., Jr, Conti-Fine B. M. Th1 epitope repertoire on the alpha subunit of human muscle acetylcholine receptor in myasthenia gravis. Neurology. 1997 Jun;48(6):1643–1653. doi: 10.1212/wnl.48.6.1643. [DOI] [PubMed] [Google Scholar]
  42. Weiner H. L., Friedman A., Miller A., Khoury S. J., al-Sabbagh A., Santos L., Sayegh M., Nussenblatt R. B., Trentham D. E., Hafler D. A. Oral tolerance: immunologic mechanisms and treatment of animal and human organ-specific autoimmune diseases by oral administration of autoantigens. Annu Rev Immunol. 1994;12:809–837. doi: 10.1146/annurev.iy.12.040194.004113. [DOI] [PubMed] [Google Scholar]
  43. Yeh T. M., Krolick K. A. T cells reactive with a small synthetic peptide of the acetylcholine receptor can provide help for a clonotypically heterogeneous antibody response and subsequently impaired muscle function. J Immunol. 1990 Mar 1;144(5):1654–1660. [PubMed] [Google Scholar]
  44. Yu M., Johnson J. M., Tuohy V. K. A predictable sequential determinant spreading cascade invariably accompanies progression of experimental autoimmune encephalomyelitis: a basis for peptide-specific therapy after onset of clinical disease. J Exp Med. 1996 Apr 1;183(4):1777–1788. doi: 10.1084/jem.183.4.1777. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. al-Sabbagh A., Nelson P. A., Akselband Y., Sobel R. A., Weiner H. L. Antigen-driven peripheral immune tolerance: suppression of experimental autoimmmune encephalomyelitis and collagen-induced arthritis by aerosol administration of myelin basic protein or type II collagen. Cell Immunol. 1996 Jul 10;171(1):111–119. doi: 10.1006/cimm.1996.0180. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES