Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1997 Dec 15;100(12):3044–3052. doi: 10.1172/JCI119859

Overexpression of Rab3D enhances regulated amylase secretion from pancreatic acini of transgenic mice.

H Ohnishi 1, L C Samuelson 1, D I Yule 1, S A Ernst 1, J A Williams 1
PMCID: PMC508517  PMID: 9399951

Abstract

Rab3D, a member of the ras-related GTP-binding protein Rab family, is localized to secretory granules of various exocrine tissues such as acinar cells of the pancreas, chief cells of the stomach, and parotid and lacrimal secretory cells. To elucidate the function of Rab3D in exocytosis, we have generated transgenic mice that over-express Rab3D specifically in pancreatic acinar cells. Hemagglutinin-tagged Rab3D was localized to zymogen granules by immunohistochemistry, and was shown to be present on zymogen granule membranes by Western blotting; both results are similar to previous studies of endogenous Rab3D. Secretion measurements in isolated acinar preparations showed that overexpression of Rab3D enhanced amylase release. Amylase secretion from intact acini of transgenic mice 5 min after 10 pM cholecystokinin octapeptide (CCK) stimulation was enhanced by 160% of control. In streptolysin-O-permeabilized acini of transgenic mice, amylase secretion induced by 100 microM GTP-gamma-S was enhanced by 150%, and 10 microM Ca2+-stimulated amylase secretion was augmented by 206% of that of the control. To further elucidate Rab3D involvement in stimulus-secretion coupling, we examined the effect of CCK on the rate of GTP binding to Rab3D. Stimulation of permeabilized acini with 10 pM CCK increased the incorporation of radiolabeled GTP into HA-tagged Rab3D. These results indicate that overexpression of Rab3D enhances secretagogue-stimulated amylase secretion through both calcium and GTP pathways. We conclude that Rab3D protein on zymogen granules plays a stimulatory role in regulated amylase secretion from pancreatic acini.

Full Text

The Full Text of this article is available as a PDF (529.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Balch W. E. Small GTP-binding proteins in vesicular transport. Trends Biochem Sci. 1990 Dec;15(12):473–477. doi: 10.1016/0968-0004(90)90301-q. [DOI] [PubMed] [Google Scholar]
  2. Baldini G., Hohl T., Lin H. Y., Lodish H. F. Cloning of a Rab3 isotype predominantly expressed in adipocytes. Proc Natl Acad Sci U S A. 1992 Jun 1;89(11):5049–5052. doi: 10.1073/pnas.89.11.5049. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Brondyk W. H., McKiernan C. J., Burstein E. S., Macara I. G. Mutants of Rab3A analogous to oncogenic Ras mutants. Sensitivity to Rab3A-GTPase activating protein and Rab3A-guanine nucleotide releasing factor. J Biol Chem. 1993 May 5;268(13):9410–9415. [PubMed] [Google Scholar]
  4. Buday L., Downward J. Epidermal growth factor regulates the exchange rate of guanine nucleotides on p21ras in fibroblasts. Mol Cell Biol. 1993 Mar;13(3):1903–1910. doi: 10.1128/mcb.13.3.1903. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Burnham D. B., Williams J. A. Effects of carbachol, cholecystokinin, and insulin on protein phosphorylation in isolated pancreatic acini. J Biol Chem. 1982 Sep 10;257(17):10523–10528. [PubMed] [Google Scholar]
  6. Burstein E. S., Brondyk W. H., Macara I. G., Kaibuchi K., Takai Y. Regulation of the GTPase cycle of the neuronally expressed Ras-like GTP-binding protein Rab3A. J Biol Chem. 1993 Oct 25;268(30):22247–22250. [PubMed] [Google Scholar]
  7. Chen Y. T., Holcomb C., Moore H. P. Expression and localization of two low molecular weight GTP-binding proteins, Rab8 and Rab10, by epitope tag. Proc Natl Acad Sci U S A. 1993 Jul 15;90(14):6508–6512. doi: 10.1073/pnas.90.14.6508. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Chung S. H., Takai Y., Holz R. W. Evidence that the Rab3a-binding protein, rabphilin3a, enhances regulated secretion. Studies in adrenal chromaffin cells. J Biol Chem. 1995 Jul 14;270(28):16714–16718. doi: 10.1074/jbc.270.28.16714. [DOI] [PubMed] [Google Scholar]
  9. Duan R. D., Zheng C. F., Guan K. L., Williams J. A. Activation of MAP kinase kinase (MEK) and Ras by cholecystokinin in rat pancreatic acini. Am J Physiol. 1995 Jun;268(6 Pt 1):G1060–G1065. doi: 10.1152/ajpgi.1995.268.6.G1060. [DOI] [PubMed] [Google Scholar]
  10. Fischer von Mollard G., Stahl B., Khokhlatchev A., Südhof T. C., Jahn R. Rab3C is a synaptic vesicle protein that dissociates from synaptic vesicles after stimulation of exocytosis. J Biol Chem. 1994 Apr 15;269(15):10971–10974. [PubMed] [Google Scholar]
  11. Fischer von Mollard G., Stahl B., Li C., Südhof T. C., Jahn R. Rab proteins in regulated exocytosis. Trends Biochem Sci. 1994 Apr;19(4):164–168. doi: 10.1016/0968-0004(94)90278-x. [DOI] [PubMed] [Google Scholar]
  12. Gaisano H. Y., Ghai M., Malkus P. N., Sheu L., Bouquillon A., Bennett M. K., Trimble W. S. Distinct cellular locations of the syntaxin family of proteins in rat pancreatic acinar cells. Mol Biol Cell. 1996 Dec;7(12):2019–2027. doi: 10.1091/mbc.7.12.2019. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Gaisano H. Y., Sheu L., Grondin G., Ghai M., Bouquillon A., Lowe A., Beaudoin A., Trimble W. S. The vesicle-associated membrane protein family of proteins in rat pancreatic and parotid acinar cells. Gastroenterology. 1996 Dec;111(6):1661–1669. doi: 10.1016/s0016-5085(96)70030-6. [DOI] [PubMed] [Google Scholar]
  14. Gomperts B. D. GE: a GTP-binding protein mediating exocytosis. Annu Rev Physiol. 1990;52:591–606. doi: 10.1146/annurev.ph.52.030190.003111. [DOI] [PubMed] [Google Scholar]
  15. Holz R. W., Brondyk W. H., Senter R. A., Kuizon L., Macara I. G. Evidence for the involvement of Rab3A in Ca(2+)-dependent exocytosis from adrenal chromaffin cells. J Biol Chem. 1994 Apr 8;269(14):10229–10234. [PubMed] [Google Scholar]
  16. Johannes L., Lledo P. M., Roa M., Vincent J. D., Henry J. P., Darchen F. The GTPase Rab3a negatively controls calcium-dependent exocytosis in neuroendocrine cells. EMBO J. 1994 May 1;13(9):2029–2037. doi: 10.1002/j.1460-2075.1994.tb06476.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Kitagawa M., Williams J. A., De Lisle R. C. Amylase release from streptolysin O-permeabilized pancreatic acini. Am J Physiol. 1990 Aug;259(2 Pt 1):G157–G164. doi: 10.1152/ajpgi.1990.259.2.G157. [DOI] [PubMed] [Google Scholar]
  18. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  19. Law G. J., Northrop A. J., Mason W. T. rab3-peptide stimulates exocytosis from mast cells via a pertussis toxin-sensitive mechanism. FEBS Lett. 1993 Oct 25;333(1-2):56–60. doi: 10.1016/0014-5793(93)80374-4. [DOI] [PubMed] [Google Scholar]
  20. Lledo P. M., Vernier P., Vincent J. D., Mason W. T., Zorec R. Inhibition of Rab3B expression attenuates Ca(2+)-dependent exocytosis in rat anterior pituitary cells. Nature. 1993 Aug 5;364(6437):540–544. doi: 10.1038/364540a0. [DOI] [PubMed] [Google Scholar]
  21. Miller S. A., Dykes D. D., Polesky H. F. A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res. 1988 Feb 11;16(3):1215–1215. doi: 10.1093/nar/16.3.1215. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Muallem S., Kwiatkowska K., Xu X., Yin H. L. Actin filament disassembly is a sufficient final trigger for exocytosis in nonexcitable cells. J Cell Biol. 1995 Feb;128(4):589–598. doi: 10.1083/jcb.128.4.589. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Novick P., Brennwald P. Friends and family: the role of the Rab GTPases in vesicular traffic. Cell. 1993 Nov 19;75(4):597–601. doi: 10.1016/0092-8674(93)90478-9. [DOI] [PubMed] [Google Scholar]
  24. Ohnishi H., Ernst S. A., Wys N., McNiven M., Williams J. A. Rab3D localizes to zymogen granules in rat pancreatic acini and other exocrine glands. Am J Physiol. 1996 Sep;271(3 Pt 1):G531–G538. doi: 10.1152/ajpgi.1996.271.3.G531. [DOI] [PubMed] [Google Scholar]
  25. Ornitz D. M., Palmiter R. D., Hammer R. E., Brinster R. L., Swift G. H., MacDonald R. J. Specific expression of an elastase-human growth hormone fusion gene in pancreatic acinar cells of transgenic mice. Nature. 1985 Feb 14;313(6003):600–602. doi: 10.1038/313600a0. [DOI] [PubMed] [Google Scholar]
  26. Padfield P. J., Balch W. E., Jamieson J. D. A synthetic peptide of the rab3a effector domain stimulates amylase release from permeabilized pancreatic acini. Proc Natl Acad Sci U S A. 1992 Mar 1;89(5):1656–1660. doi: 10.1073/pnas.89.5.1656. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Padfield P. J., Ding T. G., Jamieson J. D. Ca2(+)-dependent amylase secretion from pancreatic acinar cells occurs without activation of phospholipase C linked G-proteins. Biochem Biophys Res Commun. 1991 Jan 31;174(2):536–541. doi: 10.1016/0006-291x(91)91450-q. [DOI] [PubMed] [Google Scholar]
  28. Padfield P. J., Panesar N. Ca(2+)-dependent amylase secretion from SLO-permeabilized rat pancreatic acini requires diffusible cytosolic proteins. Am J Physiol. 1995 Nov;269(5 Pt 1):G647–G652. doi: 10.1152/ajpgi.1995.269.5.G647. [DOI] [PubMed] [Google Scholar]
  29. Raffaniello R. D., Lin J., Wang F., Raufman J. P. Expression of Rab3D in dispersed chief cells from guinea pig stomach. Biochim Biophys Acta. 1996 Apr 24;1311(2):111–116. doi: 10.1016/0167-4889(95)00204-9. [DOI] [PubMed] [Google Scholar]
  30. Shirataki H., Kaibuchi K., Sakoda T., Kishida S., Yamaguchi T., Wada K., Miyazaki M., Takai Y. Rabphilin-3A, a putative target protein for smg p25A/rab3A p25 small GTP-binding protein related to synaptotagmin. Mol Cell Biol. 1993 Apr;13(4):2061–2068. doi: 10.1128/mcb.13.4.2061. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Simons K., Zerial M. Rab proteins and the road maps for intracellular transport. Neuron. 1993 Nov;11(5):789–799. doi: 10.1016/0896-6273(93)90109-5. [DOI] [PubMed] [Google Scholar]
  32. Stahl B., von Mollard G. F., Walch-Solimena C., Jahn R. GTP cleavage by the small GTP-binding protein Rab3A is associated with exocytosis of synaptic vesicles induced by alpha-latrotoxin. J Biol Chem. 1994 Oct 7;269(40):24770–24776. [PubMed] [Google Scholar]
  33. Søgaard M., Tani K., Ye R. R., Geromanos S., Tempst P., Kirchhausen T., Rothman J. E., Söllner T. A rab protein is required for the assembly of SNARE complexes in the docking of transport vesicles. Cell. 1994 Sep 23;78(6):937–948. doi: 10.1016/0092-8674(94)90270-4. [DOI] [PubMed] [Google Scholar]
  34. Südhof T. C. The synaptic vesicle cycle: a cascade of protein-protein interactions. Nature. 1995 Jun 22;375(6533):645–653. doi: 10.1038/375645a0. [DOI] [PubMed] [Google Scholar]
  35. Tang L. H., Gumkowski F. D., Sengupta D., Modlin I. M., Jamieson J. D. rab3D protein is a specific marker for zymogen granules in gastric chief cells of rats and rabbits. Gastroenterology. 1996 Mar;110(3):809–820. doi: 10.1053/gast.1996.v110.pm8608891. [DOI] [PubMed] [Google Scholar]
  36. Ullrich O., Horiuchi H., Bucci C., Zerial M. Membrane association of Rab5 mediated by GDP-dissociation inhibitor and accompanied by GDP/GTP exchange. Nature. 1994 Mar 10;368(6467):157–160. doi: 10.1038/368157a0. [DOI] [PubMed] [Google Scholar]
  37. Valentijn J. A., Gumkowski F. D., Jamieson J. D. The expression pattern of rab3D in the developing rat exocrine pancreas coincides with the acquisition of regulated exocytosis. Eur J Cell Biol. 1996 Oct;71(2):129–136. [PubMed] [Google Scholar]
  38. Valentijn J. A., Sengupta D., Gumkowski F. D., Tang L. H., Konieczko E. M., Jamieson J. D. Rab3D localizes to secretory granules in rat pancreatic acinar cells. Eur J Cell Biol. 1996 May;70(1):33–41. [PubMed] [Google Scholar]
  39. Wagner A. C., Strowski M. Z., Williams J. A. Identification of Rab 5 but not Rab 3A in rat pancreatic zymogen granule membranes. Biochem Biophys Res Commun. 1994 Apr 15;200(1):542–548. doi: 10.1006/bbrc.1994.1482. [DOI] [PubMed] [Google Scholar]
  40. Wagner A. C., Williams J. A. Pancreatic zymogen granule membrane proteins: molecular details begin to emerge. Digestion. 1994;55(4):191–199. doi: 10.1159/000201147. [DOI] [PubMed] [Google Scholar]
  41. Wagner A. C., Wishart M. J., Mulders S. M., Blevins P. M., Andrews P. C., Lowe A. W., Williams J. A. GP-3, a newly characterized glycoprotein on the inner surface of the zymogen granule membrane, undergoes regulated secretion. J Biol Chem. 1994 Mar 25;269(12):9099–9104. [PubMed] [Google Scholar]
  42. Walworth N. C., Brennwald P., Kabcenell A. K., Garrett M., Novick P. Hydrolysis of GTP by Sec4 protein plays an important role in vesicular transport and is stimulated by a GTPase-activating protein in Saccharomyces cerevisiae. Mol Cell Biol. 1992 May;12(5):2017–2028. doi: 10.1128/mcb.12.5.2017. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Weber E., Jilling T., Kirk K. L. Distinct functional properties of Rab3A and Rab3B in PC12 neuroendocrine cells. J Biol Chem. 1996 Mar 22;271(12):6963–6971. doi: 10.1074/jbc.271.12.6963. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES