Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1997 Dec 15;100(12):3053–3059. doi: 10.1172/JCI119860

Myocardial ischemia induces differential regulation of KATP channel gene expression in rat hearts.

M Akao 1, H Otani 1, M Horie 1, M Takano 1, A Kuniyasu 1, H Nakayama 1, I Kouchi 1, T Murakami 1, S Sasayama 1
PMCID: PMC508518  PMID: 9399952

Abstract

The cardiac ATP-sensitive potassium (KATP) channel is thought to be a complex composed of an inward rectifier potassium channel (Kir6.1 and/or Kir6.2) subunit and the sulfonylurea receptor (SUR2). This channel is activated during myocardial ischemia and protects the heart from ischemic injury. We examined the transcriptional expression of these genes in rats with myocardial ischemia. 60 min of myocardial regional ischemia followed by 24-72 h, but not 3-6 h, of reperfusion specifically upregulated Kir6.1 mRNA not only in the ischemic (approximately 2.7-3.1-fold) but also in the nonischemic (approximately 2.0-2.6-fold) region of the left ventricle. 24 h of continuous ischemia without reperfusion also induced an increase in Kir6.1 mRNA in both regions, whereas 15-30 min of ischemia followed by 24 h of reperfusion did not induce such expression. In contrast, mRNAs for Kir6.2 and SUR2 remained unchanged under these ischemic procedures. Western blotting demonstrated similar increases in the Kir6.1 protein level both in the ischemic (2.4-fold) and the nonischemic (2.2-fold) region of rat hearts subjected to 60 min of ischemia followed by 24 h of reperfusion. Thus, prolonged myocardial ischemia rather than reperfusion induces delayed and differential regulation of cardiac KATP channel gene expression.

Full Text

The Full Text of this article is available as a PDF (293.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aguilar-Bryan L., Nichols C. G., Wechsler S. W., Clement J. P., 4th, Boyd A. E., 3rd, González G., Herrera-Sosa H., Nguy K., Bryan J., Nelson D. A. Cloning of the beta cell high-affinity sulfonylurea receptor: a regulator of insulin secretion. Science. 1995 Apr 21;268(5209):423–426. doi: 10.1126/science.7716547. [DOI] [PubMed] [Google Scholar]
  2. Ammälä C., Moorhouse A., Ashcroft F. M. The sulphonylurea receptor confers diazoxide sensitivity on the inwardly rectifying K+ channel Kir6.1 expressed in human embryonic kidney cells. J Physiol. 1996 Aug 1;494(Pt 3):709–714. doi: 10.1113/jphysiol.1996.sp021526. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Ammälä C., Moorhouse A., Gribble F., Ashfield R., Proks P., Smith P. A., Sakura H., Coles B., Ashcroft S. J., Ashcroft F. M. Promiscuous coupling between the sulphonylurea receptor and inwardly rectifying potassium channels. Nature. 1996 Feb 8;379(6565):545–548. doi: 10.1038/379545a0. [DOI] [PubMed] [Google Scholar]
  4. Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
  5. Chutkow W. A., Simon M. C., Le Beau M. M., Burant C. F. Cloning, tissue expression, and chromosomal localization of SUR2, the putative drug-binding subunit of cardiac, skeletal muscle, and vascular KATP channels. Diabetes. 1996 Oct;45(10):1439–1445. doi: 10.2337/diab.45.10.1439. [DOI] [PubMed] [Google Scholar]
  6. Cleutjens J. P., Verluyten M. J., Smiths J. F., Daemen M. J. Collagen remodeling after myocardial infarction in the rat heart. Am J Pathol. 1995 Aug;147(2):325–338. [PMC free article] [PubMed] [Google Scholar]
  7. Fishbein M. C., Maclean D., Maroko P. R. Experimental myocardial infarction in the rat: qualitative and quantitative changes during pathologic evolution. Am J Pathol. 1978 Jan;90(1):57–70. [PMC free article] [PubMed] [Google Scholar]
  8. Garlid K. D., Paucek P., Yarov-Yarovoy V., Sun X., Schindler P. A. The mitochondrial KATP channel as a receptor for potassium channel openers. J Biol Chem. 1996 Apr 12;271(15):8796–8799. doi: 10.1074/jbc.271.15.8796. [DOI] [PubMed] [Google Scholar]
  9. Gidh-Jain M., Huang B., Jain P., Battula V., el-Sherif N. Reemergence of the fetal pattern of L-type calcium channel gene expression in non infarcted myocardium during left ventricular remodeling. Biochem Biophys Res Commun. 1995 Nov 22;216(3):892–897. doi: 10.1006/bbrc.1995.2705. [DOI] [PubMed] [Google Scholar]
  10. Gross G. J., Auchampach J. A. Blockade of ATP-sensitive potassium channels prevents myocardial preconditioning in dogs. Circ Res. 1992 Feb;70(2):223–233. doi: 10.1161/01.res.70.2.223. [DOI] [PubMed] [Google Scholar]
  11. Grover G. J. Protective effects of ATP sensitive potassium channel openers in models of myocardial ischaemia. Cardiovasc Res. 1994 Jun;28(6):778–782. doi: 10.1093/cvr/28.6.778. [DOI] [PubMed] [Google Scholar]
  12. Hama N., Itoh H., Shirakami G., Nakagawa O., Suga S., Ogawa Y., Masuda I., Nakanishi K., Yoshimasa T., Hashimoto Y. Rapid ventricular induction of brain natriuretic peptide gene expression in experimental acute myocardial infarction. Circulation. 1995 Sep 15;92(6):1558–1564. doi: 10.1161/01.cir.92.6.1558. [DOI] [PubMed] [Google Scholar]
  13. Hanatani A., Yoshiyama M., Kim S., Omura T., Toda I., Akioka K., Teragaki M., Takeuchi K., Iwao H., Takeda T. Inhibition by angiotensin II type 1 receptor antagonist of cardiac phenotypic modulation after myocardial infarction. J Mol Cell Cardiol. 1995 Sep;27(9):1905–1914. doi: 10.1016/0022-2828(95)90013-6. [DOI] [PubMed] [Google Scholar]
  14. Hearse D. J. Activation of ATP-sensitive potassium channels: a novel pharmacological approach to myocardial protection? Cardiovasc Res. 1995 Jul;30(1):1–17. [PubMed] [Google Scholar]
  15. Higgins C. F. The ABC of channel regulation. Cell. 1995 Sep 8;82(5):693–696. doi: 10.1016/0092-8674(95)90465-4. [DOI] [PubMed] [Google Scholar]
  16. Hirsch A. T., Talsness C. E., Schunkert H., Paul M., Dzau V. J. Tissue-specific activation of cardiac angiotensin converting enzyme in experimental heart failure. Circ Res. 1991 Aug;69(2):475–482. doi: 10.1161/01.res.69.2.475. [DOI] [PubMed] [Google Scholar]
  17. Inagaki N., Gonoi T., Clement J. P., 4th, Namba N., Inazawa J., Gonzalez G., Aguilar-Bryan L., Seino S., Bryan J. Reconstitution of IKATP: an inward rectifier subunit plus the sulfonylurea receptor. Science. 1995 Nov 17;270(5239):1166–1170. doi: 10.1126/science.270.5239.1166. [DOI] [PubMed] [Google Scholar]
  18. Inagaki N., Gonoi T., Clement J. P., Wang C. Z., Aguilar-Bryan L., Bryan J., Seino S. A family of sulfonylurea receptors determines the pharmacological properties of ATP-sensitive K+ channels. Neuron. 1996 May;16(5):1011–1017. doi: 10.1016/s0896-6273(00)80124-5. [DOI] [PubMed] [Google Scholar]
  19. Inagaki N., Gonoi T., Seino S. Subunit stoichiometry of the pancreatic beta-cell ATP-sensitive K+ channel. FEBS Lett. 1997 Jun 9;409(2):232–236. doi: 10.1016/s0014-5793(97)00488-2. [DOI] [PubMed] [Google Scholar]
  20. Inagaki N., Inazawa J., Seino S. cDNA sequence, gene structure, and chromosomal localization of the human ATP-sensitive potassium channel, uKATP-1, gene (KCNJ8). Genomics. 1995 Nov 1;30(1):102–104. doi: 10.1006/geno.1995.0018. [DOI] [PubMed] [Google Scholar]
  21. Inagaki N., Tsuura Y., Namba N., Masuda K., Gonoi T., Horie M., Seino Y., Mizuta M., Seino S. Cloning and functional characterization of a novel ATP-sensitive potassium channel ubiquitously expressed in rat tissues, including pancreatic islets, pituitary, skeletal muscle, and heart. J Biol Chem. 1995 Mar 17;270(11):5691–5694. doi: 10.1074/jbc.270.11.5691. [DOI] [PubMed] [Google Scholar]
  22. Lindpaintner K., Lu W., Neidermajer N., Schieffer B., Just H., Ganten D., Drexler H. Selective activation of cardiac angiotensinogen gene expression in post-infarction ventricular remodeling in the rat. J Mol Cell Cardiol. 1993 Feb;25(2):133–143. doi: 10.1006/jmcc.1993.1017. [DOI] [PubMed] [Google Scholar]
  23. Nichols C. G., Lederer W. J. Adenosine triphosphate-sensitive potassium channels in the cardiovascular system. Am J Physiol. 1991 Dec;261(6 Pt 2):H1675–H1686. doi: 10.1152/ajpheart.1991.261.6.H1675. [DOI] [PubMed] [Google Scholar]
  24. Nio Y., Matsubara H., Murasawa S., Kanasaki M., Inada M. Regulation of gene transcription of angiotensin II receptor subtypes in myocardial infarction. J Clin Invest. 1995 Jan;95(1):46–54. doi: 10.1172/JCI117675. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Noma A. ATP-regulated K+ channels in cardiac muscle. Nature. 1983 Sep 8;305(5930):147–148. doi: 10.1038/305147a0. [DOI] [PubMed] [Google Scholar]
  26. Qian Y. Z., Levasseur J. E., Yoshida K., Kukreja R. C. KATP channels in rat heart: blockade of ischemic and acetylcholine-mediated preconditioning by glibenclamide. Am J Physiol. 1996 Jul;271(1 Pt 2):H23–H28. doi: 10.1152/ajpheart.1996.271.1.H23. [DOI] [PubMed] [Google Scholar]
  27. Sadoshima J., Xu Y., Slayter H. S., Izumo S. Autocrine release of angiotensin II mediates stretch-induced hypertrophy of cardiac myocytes in vitro. Cell. 1993 Dec 3;75(5):977–984. doi: 10.1016/0092-8674(93)90541-w. [DOI] [PubMed] [Google Scholar]
  28. Sakura H., Ammälä C., Smith P. A., Gribble F. M., Ashcroft F. M. Cloning and functional expression of the cDNA encoding a novel ATP-sensitive potassium channel subunit expressed in pancreatic beta-cells, brain, heart and skeletal muscle. FEBS Lett. 1995 Dec 27;377(3):338–344. doi: 10.1016/0014-5793(95)01369-5. [DOI] [PubMed] [Google Scholar]
  29. Schultz J. E., Yao Z., Cavero I., Gross G. J. Glibenclamide-induced blockade of ischemic preconditioning is time dependent in intact rat heart. Am J Physiol. 1997 Jun;272(6 Pt 2):H2607–H2615. doi: 10.1152/ajpheart.1997.272.6.H2607. [DOI] [PubMed] [Google Scholar]
  30. Schulz R., Rose J., Heusch G. Involvement of activation of ATP-dependent potassium channels in ischemic preconditioning in swine. Am J Physiol. 1994 Oct;267(4 Pt 2):H1341–H1352. doi: 10.1152/ajpheart.1994.267.4.H1341. [DOI] [PubMed] [Google Scholar]
  31. Takano M., Ishii T., Xie L. H. Cloning and functional expression of the rat brain KIR6.2 channel. Jpn J Physiol. 1996 Dec;46(6):491–495. doi: 10.2170/jjphysiol.46.491. [DOI] [PubMed] [Google Scholar]
  32. Thompson N. L., Bazoberry F., Speir E. H., Casscells W., Ferrans V. J., Flanders K. C., Kondaiah P., Geiser A. G., Sporn M. B. Transforming growth factor beta-1 in acute myocardial infarction in rats. Growth Factors. 1988;1(1):91–99. doi: 10.3109/08977198809000251. [DOI] [PubMed] [Google Scholar]
  33. Tokuyama Y., Fan Z., Furuta H., Makielski J. C., Polonsky K. S., Bell G. I., Yano H. Rat inwardly rectifying potassium channel Kir6.2: cloning electrophysiological characterization, and decreased expression in pancreatic islets of male Zucker diabetic fatty rats. Biochem Biophys Res Commun. 1996 Mar 27;220(3):532–538. doi: 10.1006/bbrc.1996.0439. [DOI] [PubMed] [Google Scholar]
  34. Toombs C. F., Moore T. L., Shebuski R. J. Limitation of infarct size in the rabbit by ischaemic preconditioning is reversible with glibenclamide. Cardiovasc Res. 1993 Apr;27(4):617–622. doi: 10.1093/cvr/27.4.617. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES