Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1997 Dec 15;100(12):3083–3092. doi: 10.1172/JCI119863

Blockade of CD49d (alpha4 integrin) on intrapulmonary but not circulating leukocytes inhibits airway inflammation and hyperresponsiveness in a mouse model of asthma.

W R Henderson Jr 1, E Y Chi 1, R K Albert 1, S J Chu 1, W J Lamm 1, Y Rochon 1, M Jonas 1, P E Christie 1, J M Harlan 1
PMCID: PMC508521  PMID: 9399955

Abstract

Immunized mice after inhalation of specific antigen have the following characteristic features of human asthma: airway eosinophilia, mucus and Th2 cytokine release, and hyperresponsiveness to methacholine. A model of late-phase allergic pulmonary inflammation in ovalbumin-sensitized mice was used to address the role of the alpha4 integrin (CD49d) in mediating the airway inflammation and hyperresponsiveness. Local, intrapulmonary blockade of CD49d by intranasal administration of CD49d mAb inhibited all signs of lung inflammation, IL-4 and IL-5 release, and hyperresponsiveness to methacholine. In contrast, CD49d blockade on circulating leukocytes by intraperitoneal CD49d mAb treatment only prevented the airway eosinophilia. In this asthma model, a CD49d-positive intrapulmonary leukocyte distinct from the eosinophil is the key effector cell of allergen-induced pulmonary inflammation and hyperresponsiveness.

Full Text

The Full Text of this article is available as a PDF (346.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. AMDUR M. O., MEAD J. Mechanics of respiration in unanesthetized guinea pigs. Am J Physiol. 1958 Feb;192(2):364–368. doi: 10.1152/ajplegacy.1958.192.2.364. [DOI] [PubMed] [Google Scholar]
  2. Abraham W. M., Sielczak M. W., Ahmed A., Cortes A., Lauredo I. T., Kim J., Pepinsky B., Benjamin C. D., Leone D. R., Lobb R. R. Alpha 4-integrins mediate antigen-induced late bronchial responses and prolonged airway hyperresponsiveness in sheep. J Clin Invest. 1994 Feb;93(2):776–787. doi: 10.1172/JCI117032. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Anwar A. R., Moqbel R., Walsh G. M., Kay A. B., Wardlaw A. J. Adhesion to fibronectin prolongs eosinophil survival. J Exp Med. 1993 Mar 1;177(3):839–843. doi: 10.1084/jem.177.3.839. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bentley A. M., Menz G., Storz C., Robinson D. S., Bradley B., Jeffery P. K., Durham S. R., Kay A. B. Identification of T lymphocytes, macrophages, and activated eosinophils in the bronchial mucosa in intrinsic asthma. Relationship to symptoms and bronchial responsiveness. Am Rev Respir Dis. 1992 Aug;146(2):500–506. doi: 10.1164/ajrccm/146.2.500. [DOI] [PubMed] [Google Scholar]
  5. Berlin C., Berg E. L., Briskin M. J., Andrew D. P., Kilshaw P. J., Holzmann B., Weissman I. L., Hamann A., Butcher E. C. Alpha 4 beta 7 integrin mediates lymphocyte binding to the mucosal vascular addressin MAdCAM-1. Cell. 1993 Jul 16;74(1):185–195. doi: 10.1016/0092-8674(93)90305-a. [DOI] [PubMed] [Google Scholar]
  6. Brusselle G. G., Kips J. C., Tavernier J. H., van der Heyden J. G., Cuvelier C. A., Pauwels R. A., Bluethmann H. Attenuation of allergic airway inflammation in IL-4 deficient mice. Clin Exp Allergy. 1994 Jan;24(1):73–80. doi: 10.1111/j.1365-2222.1994.tb00920.x. [DOI] [PubMed] [Google Scholar]
  7. Burkly L. C., Jakubowski A., Hattori M. Protection against adoptive transfer of autoimmune diabetes mediated through very late antigen-4 integrin. Diabetes. 1994 Apr;43(4):529–534. doi: 10.2337/diab.43.4.529. [DOI] [PubMed] [Google Scholar]
  8. Carlos T. M., Harlan J. M. Leukocyte-endothelial adhesion molecules. Blood. 1994 Oct 1;84(7):2068–2101. [PubMed] [Google Scholar]
  9. Chvatchko Y., Kosco-Vilbois M. H., Herren S., Lefort J., Bonnefoy J. Y. Germinal center formation and local immunoglobulin E (IgE) production in the lung after an airway antigenic challenge. J Exp Med. 1996 Dec 1;184(6):2353–2360. doi: 10.1084/jem.184.6.2353. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Corry D. B., Folkesson H. G., Warnock M. L., Erle D. J., Matthay M. A., Wiener-Kronish J. P., Locksley R. M. Interleukin 4, but not interleukin 5 or eosinophils, is required in a murine model of acute airway hyperreactivity. J Exp Med. 1996 Jan 1;183(1):109–117. doi: 10.1084/jem.183.1.109. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Damle N. K., Aruffo A. Vascular cell adhesion molecule 1 induces T-cell antigen receptor-dependent activation of CD4+T lymphocytes. Proc Natl Acad Sci U S A. 1991 Aug 1;88(15):6403–6407. doi: 10.1073/pnas.88.15.6403. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Davis L. S., Oppenheimer-Marks N., Bednarczyk J. L., McIntyre B. W., Lipsky P. E. Fibronectin promotes proliferation of naive and memory T cells by signaling through both the VLA-4 and VLA-5 integrin molecules. J Immunol. 1990 Aug 1;145(3):785–793. [PubMed] [Google Scholar]
  13. Elwood W., Lötvall J. O., Barnes P. J., Chung K. F. Effect of dexamethasone and cyclosporin A on allergen-induced airway hyperresponsiveness and inflammatory cell responses in sensitized Brown-Norway rats. Am Rev Respir Dis. 1992 Jun;145(6):1289–1294. doi: 10.1164/ajrccm/145.6.1289. [DOI] [PubMed] [Google Scholar]
  14. Erle D. J., Briskin M. J., Butcher E. C., Garcia-Pardo A., Lazarovits A. I., Tidswell M. Expression and function of the MAdCAM-1 receptor, integrin alpha 4 beta 7, on human leukocytes. J Immunol. 1994 Jul 15;153(2):517–528. [PubMed] [Google Scholar]
  15. Foster P. S., Hogan S. P., Ramsay A. J., Matthaei K. I., Young I. G. Interleukin 5 deficiency abolishes eosinophilia, airways hyperreactivity, and lung damage in a mouse asthma model. J Exp Med. 1996 Jan 1;183(1):195–201. doi: 10.1084/jem.183.1.195. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Fryer A. D., Costello R. W., Yost B. L., Lobb R. R., Tedder T. F., Steeber D. A., Bochner B. S. Antibody to VLA-4, but not to L-selectin, protects neuronal M2 muscarinic receptors in antigen-challenged guinea pig airways. J Clin Invest. 1997 Apr 15;99(8):2036–2044. doi: 10.1172/JCI119372. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Fung D. C., Somerville M., Richardson P. S., Sheehan J. K. Mucus glycoconjugate complexes released from feline trachea by a bacterial toxin. Am J Respir Cell Mol Biol. 1995 Mar;12(3):296–306. doi: 10.1165/ajrcmb.12.3.7873196. [DOI] [PubMed] [Google Scholar]
  18. Gavett S. H., Chen X., Finkelman F., Wills-Karp M. Depletion of murine CD4+ T lymphocytes prevents antigen-induced airway hyperreactivity and pulmonary eosinophilia. Am J Respir Cell Mol Biol. 1994 Jun;10(6):587–593. doi: 10.1165/ajrcmb.10.6.8003337. [DOI] [PubMed] [Google Scholar]
  19. Gavett S. H., O'Hearn D. J., Li X., Huang S. K., Finkelman F. D., Wills-Karp M. Interleukin 12 inhibits antigen-induced airway hyperresponsiveness, inflammation, and Th2 cytokine expression in mice. J Exp Med. 1995 Nov 1;182(5):1527–1536. doi: 10.1084/jem.182.5.1527. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Gonzalo J. A., Lloyd C. M., Kremer L., Finger E., Martinez-A C., Siegelman M. H., Cybulsky M., Gutierrez-Ramos J. C. Eosinophil recruitment to the lung in a murine model of allergic inflammation. The role of T cells, chemokines, and adhesion receptors. J Clin Invest. 1996 Nov 15;98(10):2332–2345. doi: 10.1172/JCI119045. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Gratziou C., Carroll M., Walls A., Howarth P. H., Holgate S. T. Early changes in T lymphocytes recovered by bronchoalveolar lavage after local allergen challenge of asthmatic airways. Am Rev Respir Dis. 1992 Jun;145(6):1259–1264. doi: 10.1164/ajrccm/145.6.1259. [DOI] [PubMed] [Google Scholar]
  22. Grouard G., Durand I., Filgueira L., Banchereau J., Liu Y. J. Dendritic cells capable of stimulating T cells in germinal centres. Nature. 1996 Nov 28;384(6607):364–367. doi: 10.1038/384364a0. [DOI] [PubMed] [Google Scholar]
  23. Henderson W. R., Jr, Lewis D. B., Albert R. K., Zhang Y., Lamm W. J., Chiang G. K., Jones F., Eriksen P., Tien Y. T., Jonas M. The importance of leukotrienes in airway inflammation in a mouse model of asthma. J Exp Med. 1996 Oct 1;184(4):1483–1494. doi: 10.1084/jem.184.4.1483. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Hogan S. P., Mould A., Kikutani H., Ramsay A. J., Foster P. S. Aeroallergen-induced eosinophilic inflammation, lung damage, and airways hyperreactivity in mice can occur independently of IL-4 and allergen-specific immunoglobulins. J Clin Invest. 1997 Mar 15;99(6):1329–1339. doi: 10.1172/JCI119292. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Hynes R. O. Integrins: versatility, modulation, and signaling in cell adhesion. Cell. 1992 Apr 3;69(1):11–25. doi: 10.1016/0092-8674(92)90115-s. [DOI] [PubMed] [Google Scholar]
  26. Ishida K., Thomson R. J., Beattie L. L., Wiggs B., Schellenberg R. R. Inhibition of antigen-induced airway hyperresponsiveness, but not acute hypoxia nor airway eosinophilia, by an antagonist of platelet-activating factor. J Immunol. 1990 May 15;144(10):3907–3911. [PubMed] [Google Scholar]
  27. Koopman G., Keehnen R. M., Lindhout E., Newman W., Shimizu Y., van Seventer G. A., de Groot C., Pals S. T. Adhesion through the LFA-1 (CD11a/CD18)-ICAM-1 (CD54) and the VLA-4 (CD49d)-VCAM-1 (CD106) pathways prevents apoptosis of germinal center B cells. J Immunol. 1994 Apr 15;152(8):3760–3767. [PubMed] [Google Scholar]
  28. Kung T. T., Stelts D., Zurcher J. A., Jones H., Umland S. P., Kreutner W., Egan R. W., Chapman R. W. Mast cells modulate allergic pulmonary eosinophilia in mice. Am J Respir Cell Mol Biol. 1995 Apr;12(4):404–409. doi: 10.1165/ajrcmb.12.4.7695919. [DOI] [PubMed] [Google Scholar]
  29. Laberge S., Rabb H., Issekutz T. B., Martin J. G. Role of VLA-4 and LFA-1 in allergen-induced airway hyperresponsiveness and lung inflammation in the rat. Am J Respir Crit Care Med. 1995 Mar;151(3 Pt 1):822–829. doi: 10.1164/ajrccm.151.3.7881677. [DOI] [PubMed] [Google Scholar]
  30. Lazaar A. L., Albelda S. M., Pilewski J. M., Brennan B., Puré E., Panettieri R. A., Jr T lymphocytes adhere to airway smooth muscle cells via integrins and CD44 and induce smooth muscle cell DNA synthesis. J Exp Med. 1994 Sep 1;180(3):807–816. doi: 10.1084/jem.180.3.807. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Levitt R. C., Mitzner W. Expression of airway hyperreactivity to acetylcholine as a simple autosomal recessive trait in mice. FASEB J. 1988 Jul;2(10):2605–2608. doi: 10.1096/fasebj.2.10.3384240. [DOI] [PubMed] [Google Scholar]
  32. Lilly C. M., Chapman R. W., Sehring S. J., Mauser P. J., Egan R. W., Drazen J. M. Effects of interleukin 5-induced pulmonary eosinophilia on airway reactivity in the guinea pig. Am J Physiol. 1996 Mar;270(3 Pt 1):L368–L375. doi: 10.1152/ajplung.1996.270.3.L368. [DOI] [PubMed] [Google Scholar]
  33. Lobb R. R., Hemler M. E. The pathophysiologic role of alpha 4 integrins in vivo. J Clin Invest. 1994 Nov;94(5):1722–1728. doi: 10.1172/JCI117519. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Logun C., Mullol J., Rieves D., Hoffman A., Johnson C., Miller R., Goff J., Kaliner M., Shelhamer J. Use of a monoclonal antibody enzyme-linked immunosorbent assay to measure human respiratory glycoprotein production in vitro. Am J Respir Cell Mol Biol. 1991 Jul;5(1):71–79. doi: 10.1165/ajrcmb/5.1.71. [DOI] [PubMed] [Google Scholar]
  35. Maraskovsky E., Brasel K., Teepe M., Roux E. R., Lyman S. D., Shortman K., McKenna H. J. Dramatic increase in the numbers of functionally mature dendritic cells in Flt3 ligand-treated mice: multiple dendritic cell subpopulations identified. J Exp Med. 1996 Nov 1;184(5):1953–1962. doi: 10.1084/jem.184.5.1953. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Martin T. R., Gerard N. P., Galli S. J., Drazen J. M. Pulmonary responses to bronchoconstrictor agonists in the mouse. J Appl Physiol (1985) 1988 Jun;64(6):2318–2323. doi: 10.1152/jappl.1988.64.6.2318. [DOI] [PubMed] [Google Scholar]
  37. Mauser P. J., Pitman A., Witt A., Fernandez X., Zurcher J., Kung T., Jones H., Watnick A. S., Egan R. W., Kreutner W. Inhibitory effect of the TRFK-5 anti-IL-5 antibody in a guinea pig model of asthma. Am Rev Respir Dis. 1993 Dec;148(6 Pt 1):1623–1627. doi: 10.1164/ajrccm/148.6_Pt_1.1623. [DOI] [PubMed] [Google Scholar]
  38. Nakajima H., Iwamoto I., Tomoe S., Matsumura R., Tomioka H., Takatsu K., Yoshida S. CD4+ T-lymphocytes and interleukin-5 mediate antigen-induced eosinophil infiltration into the mouse trachea. Am Rev Respir Dis. 1992 Aug;146(2):374–377. doi: 10.1164/ajrccm/146.2.374. [DOI] [PubMed] [Google Scholar]
  39. Nakajima H., Sano H., Nishimura T., Yoshida S., Iwamoto I. Role of vascular cell adhesion molecule 1/very late activation antigen 4 and intercellular adhesion molecule 1/lymphocyte function-associated antigen 1 interactions in antigen-induced eosinophil and T cell recruitment into the tissue. J Exp Med. 1994 Apr 1;179(4):1145–1154. doi: 10.1084/jem.179.4.1145. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Nojima Y., Humphries M. J., Mould A. P., Komoriya A., Yamada K. M., Schlossman S. F., Morimoto C. VLA-4 mediates CD3-dependent CD4+ T cell activation via the CS1 alternatively spliced domain of fibronectin. J Exp Med. 1990 Oct 1;172(4):1185–1192. doi: 10.1084/jem.172.4.1185. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Pretolani M., Ruffié C., Lapa e Silva J. R., Joseph D., Lobb R. R., Vargaftig B. B. Antibody to very late activation antigen 4 prevents antigen-induced bronchial hyperreactivity and cellular infiltration in the guinea pig airways. J Exp Med. 1994 Sep 1;180(3):795–805. doi: 10.1084/jem.180.3.795. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Pulendran B., Lingappa J., Kennedy M. K., Smith J., Teepe M., Rudensky A., Maliszewski C. R., Maraskovsky E. Developmental pathways of dendritic cells in vivo: distinct function, phenotype, and localization of dendritic cell subsets in FLT3 ligand-treated mice. J Immunol. 1997 Sep 1;159(5):2222–2231. [PubMed] [Google Scholar]
  43. Rabb H. A., Olivenstein R., Issekutz T. B., Renzi P. M., Martin J. G. The role of the leukocyte adhesion molecules VLA-4, LFA-1, and Mac-1 in allergic airway responses in the rat. Am J Respir Crit Care Med. 1994 May;149(5):1186–1191. doi: 10.1164/ajrccm.149.5.8173758. [DOI] [PubMed] [Google Scholar]
  44. Rankin J. A., Picarella D. E., Geba G. P., Temann U. A., Prasad B., DiCosmo B., Tarallo A., Stripp B., Whitsett J., Flavell R. A. Phenotypic and physiologic characterization of transgenic mice expressing interleukin 4 in the lung: lymphocytic and eosinophilic inflammation without airway hyperreactivity. Proc Natl Acad Sci U S A. 1996 Jul 23;93(15):7821–7825. doi: 10.1073/pnas.93.15.7821. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Reiner S. L., Zheng S., Corry D. B., Locksley R. M. Constructing polycompetitor cDNAs for quantitative PCR. J Immunol Methods. 1993 Sep 27;165(1):37–46. doi: 10.1016/0022-1759(93)90104-f. [DOI] [PubMed] [Google Scholar]
  46. Richards I. M., Kolbasa K. P., Hatfield C. A., Winterrowd G. E., Vonderfecht S. L., Fidler S. F., Griffin R. L., Brashler J. R., Krzesicki R. F., Sly L. M. Role of very late activation antigen-4 in the antigen-induced accumulation of eosinophils and lymphocytes in the lungs and airway lumen of sensitized brown Norway rats. Am J Respir Cell Mol Biol. 1996 Aug;15(2):172–183. doi: 10.1165/ajrcmb.15.2.8703473. [DOI] [PubMed] [Google Scholar]
  47. Robinson D. S., Hamid Q., Ying S., Tsicopoulos A., Barkans J., Bentley A. M., Corrigan C., Durham S. R., Kay A. B. Predominant TH2-like bronchoalveolar T-lymphocyte population in atopic asthma. N Engl J Med. 1992 Jan 30;326(5):298–304. doi: 10.1056/NEJM199201303260504. [DOI] [PubMed] [Google Scholar]
  48. Rochester C. L., Rankin J. A. Is asthma T-cell mediated? Am Rev Respir Dis. 1991 Nov;144(5):1005–1007. doi: 10.1164/ajrccm/144.5.1005. [DOI] [PubMed] [Google Scholar]
  49. Ruoslahti E., Reed J. C. Anchorage dependence, integrins, and apoptosis. Cell. 1994 May 20;77(4):477–478. doi: 10.1016/0092-8674(94)90209-7. [DOI] [PubMed] [Google Scholar]
  50. Schon-Hegrad M. A., Oliver J., McMenamin P. G., Holt P. G. Studies on the density, distribution, and surface phenotype of intraepithelial class II major histocompatibility complex antigen (Ia)-bearing dendritic cells (DC) in the conducting airways. J Exp Med. 1991 Jun 1;173(6):1345–1356. doi: 10.1084/jem.173.6.1345. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Steinman R. M. The dendritic cell system and its role in immunogenicity. Annu Rev Immunol. 1991;9:271–296. doi: 10.1146/annurev.iy.09.040191.001415. [DOI] [PubMed] [Google Scholar]
  52. Su M., Chi E. Y., Bishop M. J., Henderson W. R., Jr Lung mast cells increase in number and degranulate during pulmonary artery occlusion/reperfusion injury in dogs. Am Rev Respir Dis. 1993 Feb;147(2):448–456. doi: 10.1164/ajrccm/147.2.448. [DOI] [PubMed] [Google Scholar]
  53. Thornton D. J., Holmes D. F., Sheehan J. K., Carlstedt I. Quantitation of mucus glycoproteins blotted onto nitrocellulose membranes. Anal Biochem. 1989 Oct;182(1):160–164. doi: 10.1016/0003-2697(89)90735-5. [DOI] [PubMed] [Google Scholar]
  54. Tsuyuki S., Bertrand C., Erard F., Trifilieff A., Tsuyuki J., Wesp M., Anderson G. P., Coyle A. J. Activation of the Fas receptor on lung eosinophils leads to apoptosis and the resolution of eosinophilic inflammation of the airways. J Clin Invest. 1995 Dec;96(6):2924–2931. doi: 10.1172/JCI118364. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Walker C., Kaegi M. K., Braun P., Blaser K. Activated T cells and eosinophilia in bronchoalveolar lavages from subjects with asthma correlated with disease severity. J Allergy Clin Immunol. 1991 Dec;88(6):935–942. doi: 10.1016/0091-6749(91)90251-i. [DOI] [PubMed] [Google Scholar]
  56. Weg V. B., Williams T. J., Lobb R. R., Nourshargh S. A monoclonal antibody recognizing very late activation antigen-4 inhibits eosinophil accumulation in vivo. J Exp Med. 1993 Feb 1;177(2):561–566. doi: 10.1084/jem.177.2.561. [DOI] [PMC free article] [PubMed] [Google Scholar]
  57. Zhang Y., Lamm W. J., Albert R. K., Chi E. Y., Henderson W. R., Jr, Lewis D. B. Influence of the route of allergen administration and genetic background on the murine allergic pulmonary response. Am J Respir Crit Care Med. 1997 Feb;155(2):661–669. doi: 10.1164/ajrccm.155.2.9032210. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES