Skip to main content

Some NLM-NCBI services and products are experiencing heavy traffic, which may affect performance and availability. We apologize for the inconvenience and appreciate your patience. For assistance, please contact our Help Desk at info@ncbi.nlm.nih.gov.

The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1997 Dec 15;100(12):3093–3104. doi: 10.1172/JCI119864

Characterization of the AD7C-NTP cDNA expression in Alzheimer's disease and measurement of a 41-kD protein in cerebrospinal fluid.

S M Monte 1, K Ghanbari 1, W H Frey 1, I Beheshti 1, P Averback 1, S L Hauser 1, H A Ghanbari 1, J R Wands 1
PMCID: PMC508522  PMID: 9399956

Abstract

We have isolated a novel Alu sequence-containing cDNA, designated AD7c-NTP, that is expressed in neurons, and overexpressed in brains with Alzheimer's disease (AD). The 1,442-nucleotide AD7c-NTP cDNA encodes an approximately 41-kD protein. Expression of AD7c-NTP was confirmed by nucleic acid sequencing of reverse transcriptase PCR products isolated from brain. AD7c-NTP cDNA probes hybridized with 1. 4 kB mRNA transcripts by Northern blot analysis, and monoclonal antibodies generated with the recombinant protein were immunoreactive with approximately 41-45-kD and approximately 18-21-kD molecules by Western blot analysis. In situ hybridization and immunostaining studies localized AD7c-NTP gene expression in neurons. Using a quantitative enzyme-linked sandwich immunoassay (Ghanbari, K., I. Beheshti, and H. Ghanbari, manuscript submitted for publication) constructed with antibodies to the recombinant protein, AD7c-NTP levels were measured under code in 323 clinical and postmortem cerebrospinal fluid (CSF) samples from AD, age-matched control, Parkinson's disease, and neurological disease control patients. The molecular mass of the AD7c-NTP detected in CSF was approximately 41 kD. In postmortem CSF, the mean concentration of AD7c-NTP in cases of definite AD (9.2+/-8.2 ng/ml) was higher than in the aged control group (1.6+/-0.9; P < 0.0001). In CSF samples from individuals with early possible or probable AD, the mean concentration of AD7c-NTP (4.6+/-3.4) was also elevated relative to the levels in CSF from age-matched (1.2+/-0.7) and neurological disease (1.0+/-0.9) controls, and ambulatory patients with Parkinson's disease (1.8+/-1.1) (all P < 0.001). CSF levels of AD7c-NTP were correlated with Blessed dementia scale scores (r = 0. 66; P = 0.0001) rather than age (r = -0.06; P > 0.1). In vitro studies demonstrated that overexpression of AD7c-NTP in transfected neuronal cells promotes neuritic sprouting and cell death, the two principal neuroanatomical lesions correlated with dementia in AD. The results suggest that abnormal AD7c-NTP expression is associated with AD neurodegeneration, and during the early stages of disease, CSF levels correlate with the severity of dementia.

Full Text

The Full Text of this article is available as a PDF (703.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aschner M. The functional significance of brain metallothioneins. FASEB J. 1996 Aug;10(10):1129–1136. doi: 10.1096/fasebj.10.10.8751715. [DOI] [PubMed] [Google Scholar]
  2. Bellet D. H., Ozturk M., Bidart J. M., Bohuon C. J., Wands J. R. Sensitive and specific assay for human chorionic gonadotropin (hCG) based on anti-peptide and anti-hCG monoclonal antibodies: construction and clinical implications. J Clin Endocrinol Metab. 1986 Dec;63(6):1319–1327. doi: 10.1210/jcem-63-6-1319. [DOI] [PubMed] [Google Scholar]
  3. Biedler J. L., Helson L., Spengler B. A. Morphology and growth, tumorigenicity, and cytogenetics of human neuroblastoma cells in continuous culture. Cancer Res. 1973 Nov;33(11):2643–2652. [PubMed] [Google Scholar]
  4. Cataldo A. M., Barnett J. L., Berman S. A., Li J., Quarless S., Bursztajn S., Lippa C., Nixon R. A. Gene expression and cellular content of cathepsin D in Alzheimer's disease brain: evidence for early up-regulation of the endosomal-lysosomal system. Neuron. 1995 Mar;14(3):671–680. doi: 10.1016/0896-6273(95)90324-0. [DOI] [PubMed] [Google Scholar]
  5. Chandrasekaran K., Giordano T., Brady D. R., Stoll J., Martin L. J., Rapoport S. I. Impairment in mitochondrial cytochrome oxidase gene expression in Alzheimer disease. Brain Res Mol Brain Res. 1994 Jul;24(1-4):336–340. doi: 10.1016/0169-328x(94)90147-3. [DOI] [PubMed] [Google Scholar]
  6. Corder E. H., Saunders A. M., Strittmatter W. J., Schmechel D. E., Gaskell P. C., Small G. W., Roses A. D., Haines J. L., Pericak-Vance M. A. Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer's disease in late onset families. Science. 1993 Aug 13;261(5123):921–923. doi: 10.1126/science.8346443. [DOI] [PubMed] [Google Scholar]
  7. De La Monte S. M., Carlson R. I., Brown N. V., Wands J. R. Profiles of neuronal thread protein expression in Alzheimer's disease. J Neuropathol Exp Neurol. 1996 Oct;55(10):1038–1050. [PubMed] [Google Scholar]
  8. DeKosky S. T., Scheff S. W. Synapse loss in frontal cortex biopsies in Alzheimer's disease: correlation with cognitive severity. Ann Neurol. 1990 May;27(5):457–464. doi: 10.1002/ana.410270502. [DOI] [PubMed] [Google Scholar]
  9. Fischer B., Schmoll H., Riederer P., Bauer J., Platt D., Popa-Wagner A. Complement C1q and C3 mRNA expression in the frontal cortex of Alzheimer's patients. J Mol Med (Berl) 1995 Sep;73(9):465–471. doi: 10.1007/BF00202265. [DOI] [PubMed] [Google Scholar]
  10. Goodison K. L., Parhad I. M., White C. L., 3rd, Sima A. A., Clark A. W. Neuronal and glial gene expression in neocortex of Down's syndrome and Alzheimer's disease. J Neuropathol Exp Neurol. 1993 May;52(3):192–198. doi: 10.1097/00005072-199305000-00002. [DOI] [PubMed] [Google Scholar]
  11. Grundke-Iqbal I., Iqbal K., Tung Y. C., Quinlan M., Wisniewski H. M., Binder L. I. Abnormal phosphorylation of the microtubule-associated protein tau (tau) in Alzheimer cytoskeletal pathology. Proc Natl Acad Sci U S A. 1986 Jul;83(13):4913–4917. doi: 10.1073/pnas.83.13.4913. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Howard B. H., Sakamoto K. Alu interspersed repeats: selfish DNA or a functional gene family? New Biol. 1990 Sep;2(9):759–770. [PubMed] [Google Scholar]
  13. Khachaturian Z. S. Diagnosis of Alzheimer's disease. Arch Neurol. 1985 Nov;42(11):1097–1105. doi: 10.1001/archneur.1985.04060100083029. [DOI] [PubMed] [Google Scholar]
  14. Kornreich R., Bishop D. F., Desnick R. J. Alpha-galactosidase A gene rearrangements causing Fabry disease. Identification of short direct repeats at breakpoints in an Alu-rich gene. J Biol Chem. 1990 Jun 5;265(16):9319–9326. [PubMed] [Google Scholar]
  15. LaFerla F. M., Tinkle B. T., Bieberich C. J., Haudenschild C. C., Jay G. The Alzheimer's A beta peptide induces neurodegeneration and apoptotic cell death in transgenic mice. Nat Genet. 1995 Jan;9(1):21–30. doi: 10.1038/ng0195-21. [DOI] [PubMed] [Google Scholar]
  16. Lai F., Williams R. S. A prospective study of Alzheimer disease in Down syndrome. Arch Neurol. 1989 Aug;46(8):849–853. doi: 10.1001/archneur.1989.00520440031017. [DOI] [PubMed] [Google Scholar]
  17. Lai F., Williams R. S. A prospective study of Alzheimer disease in Down syndrome. Arch Neurol. 1989 Aug;46(8):849–853. doi: 10.1001/archneur.1989.00520440031017. [DOI] [PubMed] [Google Scholar]
  18. Lee R. T., Bloch K. D., Pfeffer J. M., Pfeffer M. A., Neer E. J., Seidman C. E. Atrial natriuretic factor gene expression in ventricles of rats with spontaneous biventricular hypertrophy. J Clin Invest. 1988 Feb;81(2):431–434. doi: 10.1172/JCI113337. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Lehrman M. A., Russell D. W., Goldstein J. L., Brown M. S. Alu-Alu recombination deletes splice acceptor sites and produces secreted low density lipoprotein receptor in a subject with familial hypercholesterolemia. J Biol Chem. 1987 Mar 5;262(7):3354–3361. [PubMed] [Google Scholar]
  20. Lemere C. A., Lopera F., Kosik K. S., Lendon C. L., Ossa J., Saido T. C., Yamaguchi H., Ruiz A., Martinez A., Madrigal L. The E280A presenilin 1 Alzheimer mutation produces increased A beta 42 deposition and severe cerebellar pathology. Nat Med. 1996 Oct;2(10):1146–1150. doi: 10.1038/nm1096-1146. [DOI] [PubMed] [Google Scholar]
  21. Levy-Lahad E., Wasco W., Poorkaj P., Romano D. M., Oshima J., Pettingell W. H., Yu C. E., Jondro P. D., Schmidt S. D., Wang K. Candidate gene for the chromosome 1 familial Alzheimer's disease locus. Science. 1995 Aug 18;269(5226):973–977. doi: 10.1126/science.7638622. [DOI] [PubMed] [Google Scholar]
  22. Levy-Lahad E., Wasco W., Poorkaj P., Romano D. M., Oshima J., Pettingell W. H., Yu C. E., Jondro P. D., Schmidt S. D., Wang K. Candidate gene for the chromosome 1 familial Alzheimer's disease locus. Science. 1995 Aug 18;269(5226):973–977. doi: 10.1126/science.7638622. [DOI] [PubMed] [Google Scholar]
  23. Li L., Bray P. F. Homologous recombination among three intragene Alu sequences causes an inversion-deletion resulting in the hereditary bleeding disorder Glanzmann thrombasthenia. Am J Hum Genet. 1993 Jul;53(1):140–149. [PMC free article] [PubMed] [Google Scholar]
  24. May P. C., Lampert-Etchells M., Johnson S. A., Poirier J., Masters J. N., Finch C. E. Dynamics of gene expression for a hippocampal glycoprotein elevated in Alzheimer's disease and in response to experimental lesions in rat. Neuron. 1990 Dec;5(6):831–839. doi: 10.1016/0896-6273(90)90342-d. [DOI] [PubMed] [Google Scholar]
  25. McKee A. C., Kosik K. S., Kowall N. W. Neuritic pathology and dementia in Alzheimer's disease. Ann Neurol. 1991 Aug;30(2):156–165. doi: 10.1002/ana.410300206. [DOI] [PubMed] [Google Scholar]
  26. McKhann G., Drachman D., Folstein M., Katzman R., Price D., Stadlan E. M. Clinical diagnosis of Alzheimer's disease: report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer's Disease. Neurology. 1984 Jul;34(7):939–944. doi: 10.1212/wnl.34.7.939. [DOI] [PubMed] [Google Scholar]
  27. Mirra S. S., Heyman A., McKeel D., Sumi S. M., Crain B. J., Brownlee L. M., Vogel F. S., Hughes J. P., van Belle G., Berg L. The Consortium to Establish a Registry for Alzheimer's Disease (CERAD). Part II. Standardization of the neuropathologic assessment of Alzheimer's disease. Neurology. 1991 Apr;41(4):479–486. doi: 10.1212/wnl.41.4.479. [DOI] [PubMed] [Google Scholar]
  28. O'Barr S., Schultz J., Rogers J. Expression of the protooncogene bcl-2 in Alzheimer's disease brain. Neurobiol Aging. 1996 Jan-Feb;17(1):131–136. doi: 10.1016/0197-4580(95)02024-1. [DOI] [PubMed] [Google Scholar]
  29. Ozturk M., Bellet D., Manil L., Hennen G., Frydman R., Wands J. Physiological studies of human chorionic gonadotropin (hCG), alpha hCG, and beta hCG as measured by specific monoclonal immunoradiometric assays. Endocrinology. 1987 Feb;120(2):549–558. doi: 10.1210/endo-120-2-549. [DOI] [PubMed] [Google Scholar]
  30. Pasternack J. M., Abraham C. R., Van Dyke B. J., Potter H., Younkin S. G. Astrocytes in Alzheimer's disease gray matter express alpha 1-antichymotrypsin mRNA. Am J Pathol. 1989 Nov;135(5):827–834. [PMC free article] [PubMed] [Google Scholar]
  31. Peress N. S., Perillo E. Differential expression of TGF-beta 1, 2 and 3 isotypes in Alzheimer's disease: a comparative immunohistochemical study with cerebral infarction, aged human and mouse control brains. J Neuropathol Exp Neurol. 1995 Nov;54(6):802–811. doi: 10.1097/00005072-199511000-00007. [DOI] [PubMed] [Google Scholar]
  32. Rogaev E. I., Sherrington R., Rogaeva E. A., Levesque G., Ikeda M., Liang Y., Chi H., Lin C., Holman K., Tsuda T. Familial Alzheimer's disease in kindreds with missense mutations in a gene on chromosome 1 related to the Alzheimer's disease type 3 gene. Nature. 1995 Aug 31;376(6543):775–778. doi: 10.1038/376775a0. [DOI] [PubMed] [Google Scholar]
  33. Sakamoto K., Fordis C. M., Corsico C. D., Howard T. H., Howard B. H. Modulation of HeLa cell growth by transfected 7SL RNA and Alu gene sequences. J Biol Chem. 1991 Feb 15;266(5):3031–3038. [PubMed] [Google Scholar]
  34. Sherrington R., Rogaev E. I., Liang Y., Rogaeva E. A., Levesque G., Ikeda M., Chi H., Lin C., Li G., Holman K. Cloning of a gene bearing missense mutations in early-onset familial Alzheimer's disease. Nature. 1995 Jun 29;375(6534):754–760. doi: 10.1038/375754a0. [DOI] [PubMed] [Google Scholar]
  35. Shimada F., Taira M., Suzuki Y., Hashimoto N., Nozaki O., Taira M., Tatibana M., Ebina Y., Tawata M., Onaya T. Insulin-resistant diabetes associated with partial deletion of insulin-receptor gene. Lancet. 1990 May 19;335(8699):1179–1181. doi: 10.1016/0140-6736(90)92695-e. [DOI] [PubMed] [Google Scholar]
  36. Singer M. F. Highly repeated sequences in mammalian genomes. Int Rev Cytol. 1982;76:67–112. doi: 10.1016/s0074-7696(08)61789-1. [DOI] [PubMed] [Google Scholar]
  37. Smale G., Nichols N. R., Brady D. R., Finch C. E., Horton W. E., Jr Evidence for apoptotic cell death in Alzheimer's disease. Exp Neurol. 1995 Jun;133(2):225–230. doi: 10.1006/exnr.1995.1025. [DOI] [PubMed] [Google Scholar]
  38. Somerville M. J., Percy M. E., Bergeron C., Yoong L. K., Grima E. A., McLachlan D. R. Localization and quantitation of 68 kDa neurofilament and superoxide dismutase-1 mRNA in Alzheimer brains. Brain Res Mol Brain Res. 1991 Jan;9(1-2):1–8. doi: 10.1016/0169-328x(91)90123-f. [DOI] [PubMed] [Google Scholar]
  39. Sorbi S., Nacmias B., Forleo P., Piacentini S., Sherrington R., Rogaev E., St George Hyslop P., Amaducci L. Missense mutation of S182 gene in Italian families with early-onset Alzheimer's disease. Lancet. 1995 Aug 12;346(8972):439–440. doi: 10.1016/s0140-6736(95)92809-x. [DOI] [PubMed] [Google Scholar]
  40. Su J. H., Anderson A. J., Cummings B. J., Cotman C. W. Immunohistochemical evidence for apoptosis in Alzheimer's disease. Neuroreport. 1994 Dec 20;5(18):2529–2533. doi: 10.1097/00001756-199412000-00031. [DOI] [PubMed] [Google Scholar]
  41. Tanzi R. E., Vaula G., Romano D. M., Mortilla M., Huang T. L., Tupler R. G., Wasco W., Hyman B. T., Haines J. L., Jenkins B. J. Assessment of amyloid beta-protein precursor gene mutations in a large set of familial and sporadic Alzheimer disease cases. Am J Hum Genet. 1992 Aug;51(2):273–282. [PMC free article] [PubMed] [Google Scholar]
  42. Wallace M. R., Andersen L. B., Saulino A. M., Gregory P. E., Glover T. W., Collins F. S. A de novo Alu insertion results in neurofibromatosis type 1. Nature. 1991 Oct 31;353(6347):864–866. doi: 10.1038/353864a0. [DOI] [PubMed] [Google Scholar]
  43. White R. J., Stott D., Rigby P. W. Regulation of RNA polymerase III transcription in response to F9 embryonal carcinoma stem cell differentiation. Cell. 1989 Dec 22;59(6):1081–1092. doi: 10.1016/0092-8674(89)90764-2. [DOI] [PubMed] [Google Scholar]
  44. Yamagishi M., Takami S., Getchell T. V. Ontogenetic expression of spot 35 protein (calbindin-D28k) in human olfactory receptor neurons and its decrease in Alzheimer's disease patients. Ann Otol Rhinol Laryngol. 1996 Feb;105(2):132–139. doi: 10.1177/000348949610500208. [DOI] [PubMed] [Google Scholar]
  45. de la Monte S. M., Bloch K. D. Aberrant expression of the constitutive endothelial nitric oxide synthase gene in Alzheimer disease. Mol Chem Neuropathol. 1997 Jan-Feb;30(1-2):139–159. doi: 10.1007/BF02815155. [DOI] [PubMed] [Google Scholar]
  46. de la Monte S. M., Ng S. C., Hsu D. W. Aberrant GAP-43 gene expression in Alzheimer's disease. Am J Pathol. 1995 Oct;147(4):934–946. [PMC free article] [PubMed] [Google Scholar]
  47. de la Monte S. M., Ozturk M., Wands J. R. Enhanced expression of an exocrine pancreatic protein in Alzheimer's disease and the developing human brain. J Clin Invest. 1990 Sep;86(3):1004–1013. doi: 10.1172/JCI114762. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES