Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1997 Dec 15;100(12):3105–3110. doi: 10.1172/JCI119865

Leptin selectively decreases visceral adiposity and enhances insulin action.

N Barzilai 1, J Wang 1, D Massilon 1, P Vuguin 1, M Hawkins 1, L Rossetti 1
PMCID: PMC508523  PMID: 9399957

Abstract

Intraabdominal adiposity and insulin resistance are risk factors for diabetes mellitus, dyslipidemia, arteriosclerosis, and mortality. Leptin, a fat-derived protein encoded by the ob gene, has been postulated to be a sensor of energy storage in adipose tissue capable of mediating a feedback signal to sites involved in the regulation of energy homeostasis. Here, we provide evidence for specific effects of leptin on fat distribution and in vivo insulin action. Leptin (LEP) or vehicle (CON) was administered by osmotic minipumps for 8 d to pair-fed adult rats. During the 8 d of the study, body weight and total fat mass decreased similarly in LEP and in CON. However, while moderate calorie restriction (CON) resulted in similar decreases in whole body (by 20%) and visceral (by 21%) fat, leptin administration led to a specific and marked decrease (by 62%) in visceral adiposity. During physiologic hyperinsulinemia (insulin clamp), leptin markedly enhanced insulin action on both inhibition of hepatic glucose production and stimulation of glucose uptake. Finally, leptin exerted complex effects on the hepatic gene expression of key metabolic enzymes and on the intrahepatic partitioning of metabolic fluxes, which are likely to represent a defense against excessive storage of energy in adipose depots. These studies demonstrate novel actions of circulating leptin in the regulation of fat distribution, insulin action, and hepatic gene expression and suggest that it may play a role in the pathophysiology of abdominal obesity and insulin resistance.

Full Text

The Full Text of this article is available as a PDF (178.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barzilai N., Massillon D., Rossetti L. Effects of fasting on hepatic and peripheral glucose metabolism in conscious rats with near-total fat depletion. Biochem J. 1995 Sep 15;310(Pt 3):819–826. doi: 10.1042/bj3100819. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Barzilai N., Rossetti L. Role of glucokinase and glucose-6-phosphatase in the acute and chronic regulation of hepatic glucose fluxes by insulin. J Biol Chem. 1993 Nov 25;268(33):25019–25025. [PubMed] [Google Scholar]
  3. Björntorp P. Metabolic implications of body fat distribution. Diabetes Care. 1991 Dec;14(12):1132–1143. doi: 10.2337/diacare.14.12.1132. [DOI] [PubMed] [Google Scholar]
  4. Campfield L. A., Smith F. J., Guisez Y., Devos R., Burn P. Recombinant mouse OB protein: evidence for a peripheral signal linking adiposity and central neural networks. Science. 1995 Jul 28;269(5223):546–549. doi: 10.1126/science.7624778. [DOI] [PubMed] [Google Scholar]
  5. Cohen B., Novick D., Rubinstein M. Modulation of insulin activities by leptin. Science. 1996 Nov 15;274(5290):1185–1188. doi: 10.1126/science.274.5290.1185. [DOI] [PubMed] [Google Scholar]
  6. Frederich R. C., Hamann A., Anderson S., Löllmann B., Lowell B. B., Flier J. S. Leptin levels reflect body lipid content in mice: evidence for diet-induced resistance to leptin action. Nat Med. 1995 Dec;1(12):1311–1314. doi: 10.1038/nm1295-1311. [DOI] [PubMed] [Google Scholar]
  7. Halaas J. L., Gajiwala K. S., Maffei M., Cohen S. L., Chait B. T., Rabinowitz D., Lallone R. L., Burley S. K., Friedman J. M. Weight-reducing effects of the plasma protein encoded by the obese gene. Science. 1995 Jul 28;269(5223):543–546. doi: 10.1126/science.7624777. [DOI] [PubMed] [Google Scholar]
  8. Himms-Hagen J., Cui J., Danforth E., Jr, Taatjes D. J., Lang S. S., Waters B. L., Claus T. H. Effect of CL-316,243, a thermogenic beta 3-agonist, on energy balance and brown and white adipose tissues in rats. Am J Physiol. 1994 Apr;266(4 Pt 2):R1371–R1382. doi: 10.1152/ajpregu.1994.266.4.R1371. [DOI] [PubMed] [Google Scholar]
  9. Kissebah A. H. Insulin resistance in visceral obesity. Int J Obes. 1991 Sep;15 (Suppl 2):109–115. [PubMed] [Google Scholar]
  10. Mantzoros C. S., Qu D., Frederich R. C., Susulic V. S., Lowell B. B., Maratos-Flier E., Flier J. S. Activation of beta(3) adrenergic receptors suppresses leptin expression and mediates a leptin-independent inhibition of food intake in mice. Diabetes. 1996 Jul;45(7):909–914. doi: 10.2337/diab.45.7.909. [DOI] [PubMed] [Google Scholar]
  11. Massillon D., Barzilai N., Chen W., Hu M., Rossetti L. Glucose regulates in vivo glucose-6-phosphatase gene expression in the liver of diabetic rats. J Biol Chem. 1996 Apr 26;271(17):9871–9874. doi: 10.1074/jbc.271.17.9871. [DOI] [PubMed] [Google Scholar]
  12. McGarry J. D., Mannaerts G. P., Foster D. W. A possible role for malonyl-CoA in the regulation of hepatic fatty acid oxidation and ketogenesis. J Clin Invest. 1977 Jul;60(1):265–270. doi: 10.1172/JCI108764. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Moir A. M., Zammit V. A. Rapid switch of hepatic fatty acid metabolism from oxidation to esterification during diurnal feeding of meal-fed rats correlates with changes in the properties of acetyl-CoA carboxylase, but not of carnitine palmitoyltransferase I. Biochem J. 1993 Apr 1;291(Pt 1):241–246. doi: 10.1042/bj2910241. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Pelleymounter M. A., Cullen M. J., Baker M. B., Hecht R., Winters D., Boone T., Collins F. Effects of the obese gene product on body weight regulation in ob/ob mice. Science. 1995 Jul 28;269(5223):540–543. doi: 10.1126/science.7624776. [DOI] [PubMed] [Google Scholar]
  15. Prentki M., Corkey B. E. Are the beta-cell signaling molecules malonyl-CoA and cystolic long-chain acyl-CoA implicated in multiple tissue defects of obesity and NIDDM? Diabetes. 1996 Mar;45(3):273–283. doi: 10.2337/diab.45.3.273. [DOI] [PubMed] [Google Scholar]
  16. Rentsch J., Levens N., Chiesi M. Recombinant ob-gene product reduces food intake in fasted mice. Biochem Biophys Res Commun. 1995 Sep 5;214(1):131–136. doi: 10.1006/bbrc.1995.2266. [DOI] [PubMed] [Google Scholar]
  17. Rohner-Jeanrenaud F., Jeanrenaud B. Obesity, leptin, and the brain. N Engl J Med. 1996 Feb 1;334(5):324–325. doi: 10.1056/NEJM199602013340511. [DOI] [PubMed] [Google Scholar]
  18. Rossetti L., Giaccari A., Barzilai N., Howard K., Sebel G., Hu M. Mechanism by which hyperglycemia inhibits hepatic glucose production in conscious rats. Implications for the pathophysiology of fasting hyperglycemia in diabetes. J Clin Invest. 1993 Sep;92(3):1126–1134. doi: 10.1172/JCI116681. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Rossetti L., Massillon D., Barzilai N., Vuguin P., Chen W., Hawkins M., Wu J., Wang J. Short term effects of leptin on hepatic gluconeogenesis and in vivo insulin action. J Biol Chem. 1997 Oct 31;272(44):27758–27763. doi: 10.1074/jbc.272.44.27758. [DOI] [PubMed] [Google Scholar]
  20. Rossetti L., Smith D., Shulman G. I., Papachristou D., DeFronzo R. A. Correction of hyperglycemia with phlorizin normalizes tissue sensitivity to insulin in diabetic rats. J Clin Invest. 1987 May;79(5):1510–1515. doi: 10.1172/JCI112981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Schwartz M. W., Baskin D. G., Bukowski T. R., Kuijper J. L., Foster D., Lasser G., Prunkard D. E., Porte D., Jr, Woods S. C., Seeley R. J. Specificity of leptin action on elevated blood glucose levels and hypothalamic neuropeptide Y gene expression in ob/ob mice. Diabetes. 1996 Apr;45(4):531–535. doi: 10.2337/diab.45.4.531. [DOI] [PubMed] [Google Scholar]
  22. Schwartz M. W., Seeley R. J., Campfield L. A., Burn P., Baskin D. G. Identification of targets of leptin action in rat hypothalamus. J Clin Invest. 1996 Sep 1;98(5):1101–1106. doi: 10.1172/JCI118891. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Shimabukuro M., Koyama K., Chen G., Wang M. Y., Trieu F., Lee Y., Newgard C. B., Unger R. H. Direct antidiabetic effect of leptin through triglyceride depletion of tissues. Proc Natl Acad Sci U S A. 1997 Apr 29;94(9):4637–4641. doi: 10.1073/pnas.94.9.4637. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Sidossis L. S., Stuart C. A., Shulman G. I., Lopaschuk G. D., Wolfe R. R. Glucose plus insulin regulate fat oxidation by controlling the rate of fatty acid entry into the mitochondria. J Clin Invest. 1996 Nov 15;98(10):2244–2250. doi: 10.1172/JCI119034. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Sivitz W. I., Walsh S. A., Morgan D. A., Thomas M. J., Haynes W. G. Effects of leptin on insulin sensitivity in normal rats. Endocrinology. 1997 Aug;138(8):3395–3401. doi: 10.1210/endo.138.8.5327. [DOI] [PubMed] [Google Scholar]
  26. Tartaglia L. A., Dembski M., Weng X., Deng N., Culpepper J., Devos R., Richards G. J., Campfield L. A., Clark F. T., Deeds J. Identification and expression cloning of a leptin receptor, OB-R. Cell. 1995 Dec 29;83(7):1263–1271. doi: 10.1016/0092-8674(95)90151-5. [DOI] [PubMed] [Google Scholar]
  27. Weigle D. S., Bukowski T. R., Foster D. C., Holderman S., Kramer J. M., Lasser G., Lofton-Day C. E., Prunkard D. E., Raymond C., Kuijper J. L. Recombinant ob protein reduces feeding and body weight in the ob/ob mouse. J Clin Invest. 1995 Oct;96(4):2065–2070. doi: 10.1172/JCI118254. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Zhang Y., Proenca R., Maffei M., Barone M., Leopold L., Friedman J. M. Positional cloning of the mouse obese gene and its human homologue. Nature. 1994 Dec 1;372(6505):425–432. doi: 10.1038/372425a0. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES