Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1997 Dec 15;100(12):3121–3130. doi: 10.1172/JCI119867

Indirect effect of insulin to suppress endogenous glucose production is dominant, even with hyperglucagonemia.

S D Mittelman 1, Y Y Fu 1, K Rebrin 1, G Steil 1, R N Bergman 1
PMCID: PMC508525  PMID: 9399959

Abstract

Suppression of endogenous glucose production (EGP) is one of insulin's primary metabolic effects and failure of this action is a major contributor to fasting hyperglycemia of type 2 diabetes mellitus. Classically, insulin was thought to suppress the liver directly, via hyperinsulinemia in the portal vein. Recently, however, we and others have demonstrated that at least part, and possibly most of insulin's action to suppress EGP is normally mediated via an extrahepatic (i.e., indirect) mechanism. We have suggested that this mechanism involves insulin suppression of adipocyte lipolysis, leading to lowered FFA and reduced EGP ("Single Gateway Hypothesis"). Previous studies of the indirect insulin effect from this laboratory were done under conditions of lowered portal glucagon. Because of the possibility that the direct (i.e., portal) effect of insulin may have been underestimated with hypoglucagonemia, these studies examined the relative importance of portal insulin, versus peripheral insulin (administered at one-half the dose to equalize peripheral insulin levels) at four rates of portal glucagon infusion: 0, 0.65 (under-), 1.5 (basal-), and 3.0 ng/kg per min (over-replacement). Portal versus peripheral insulin suppressed steady-state EGP to the same extent (52%), confirming that the primary effect of insulin to suppress EGP is via the peripheral mechanism. This conclusion was maintained regardless of portal glucagonemia, although there was some evidence for an increase in the direct insulin effect at hyperglucagonemia. The indirect effect of insulin is the primary mechanism of steady-state EGP suppression under normal conditions. The direct effect increases with hyperglucagonemia; however, the indirect effect remains predominant even under those conditions.

Full Text

The Full Text of this article is available as a PDF (226.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ader M., Bergman R. N. Peripheral effects of insulin dominate suppression of fasting hepatic glucose production. Am J Physiol. 1990 Jun;258(6 Pt 1):E1020–E1032. doi: 10.1152/ajpendo.1990.258.6.E1020. [DOI] [PubMed] [Google Scholar]
  2. Baron A. D., Schaeffer L., Shragg P., Kolterman O. G. Role of hyperglucagonemia in maintenance of increased rates of hepatic glucose output in type II diabetics. Diabetes. 1987 Mar;36(3):274–283. doi: 10.2337/diab.36.3.274. [DOI] [PubMed] [Google Scholar]
  3. Bergman R. N., Ader M., Finegood D. T., Pacini G. Extrapancreatic effect of somatostatin infusion to increase glucose clearance. Am J Physiol. 1984 Sep;247(3 Pt 1):E370–E379. doi: 10.1152/ajpendo.1984.247.3.E370. [DOI] [PubMed] [Google Scholar]
  4. Borghi V. C., Wajchenberg B. L., Albuquerque R. H. Evaluation of a sensitive and specific radioimmunoassay for pancreatic glucagon in human plasma and its clinical application. Clin Chim Acta. 1984 Jan 16;136(1):39–48. doi: 10.1016/0009-8981(84)90245-6. [DOI] [PubMed] [Google Scholar]
  5. Boyd M. E., Albright E. B., Foster D. W., McGarry J. D. In vitro reversal of the fasting state of liver metabolism in the rat. Reevaluation of the roles of insulin and glucose. J Clin Invest. 1981 Jul;68(1):142–152. doi: 10.1172/JCI110230. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bradley D. C., Bergman R. N. Hepatic glucagon sensitivity and fasting glucose concentration in normal dogs. Am J Physiol. 1992 Apr;262(4 Pt 1):E539–E545. doi: 10.1152/ajpendo.1992.262.4.E539. [DOI] [PubMed] [Google Scholar]
  7. Bradley D. C., Bergman R. N. Restoration of stable metabolic conditions during islet suppression in dogs. Am J Physiol. 1992 Apr;262(4 Pt 1):E532–E538. doi: 10.1152/ajpendo.1992.262.4.E532. [DOI] [PubMed] [Google Scholar]
  8. Cersosimo E., Judd R. L., Miles J. M. Insulin regulation of renal glucose metabolism in conscious dogs. J Clin Invest. 1994 Jun;93(6):2584–2589. doi: 10.1172/JCI117270. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Cherrington A. D., Lacy W. W., Williams P. E., Steiner K. E. Failure of somatostatin to modify effect of glucagon on carbohydrate metabolism in the dog. Am J Physiol. 1983 Jun;244(6):E596–E602. doi: 10.1152/ajpendo.1983.244.6.E596. [DOI] [PubMed] [Google Scholar]
  10. Cherrington A. D., Williams P. E., Shulman G. I., Lacy W. W. Differential time course of glucagon's effect on glycogenolysis and gluconeogenesis in the conscious dog. Diabetes. 1981 Mar;30(3):180–187. doi: 10.2337/diab.30.3.180. [DOI] [PubMed] [Google Scholar]
  11. Claus T. H., Pilkis S. J. Regulation by insulin of gluconeogenesis in isolated rat hepatocytes. Biochim Biophys Acta. 1976 Feb 24;421(2):246–262. doi: 10.1016/0304-4165(76)90291-9. [DOI] [PubMed] [Google Scholar]
  12. Finegood D. T., Bergman R. N., Vranic M. Estimation of endogenous glucose production during hyperinsulinemic-euglycemic glucose clamps. Comparison of unlabeled and labeled exogenous glucose infusates. Diabetes. 1987 Aug;36(8):914–924. doi: 10.2337/diab.36.8.914. [DOI] [PubMed] [Google Scholar]
  13. Fisher S. J., Shi Z. Q., Lickley H. L., Efendic S., Vranic M., Giacca A. A moderate decline in specific activity does not lead to an underestimation of hepatic glucose production during a glucose clamp. Metabolism. 1996 May;45(5):587–593. doi: 10.1016/s0026-0495(96)90028-1. [DOI] [PubMed] [Google Scholar]
  14. Gabbay R. A., Lardy H. A. Site of insulin inhibition of cAMP-stimulated glycogenolysis. J Biol Chem. 1984 May 25;259(10):6052–6055. [PubMed] [Google Scholar]
  15. Giacca A., Fisher S. J., McCall R. H., Shi Z. Q., Vranic M. Direct and indirect effects of insulin in suppressing glucose production in depancreatized dogs: role of glucagon. Endocrinology. 1997 Mar;138(3):999–1007. doi: 10.1210/endo.138.3.5025. [DOI] [PubMed] [Google Scholar]
  16. Giacca A., Fisher S. J., Shi Z. Q., Gupta R., Lickley H. L., Vranic M. Importance of peripheral insulin levels for insulin-induced suppression of glucose production in depancreatized dogs. J Clin Invest. 1992 Nov;90(5):1769–1777. doi: 10.1172/JCI116051. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Glinsmann W. H., Mortimore G. E. Influence of glucagon and 3', 5'-AMP on insulin responsiveness of the perfused rat liver. Am J Physiol. 1968 Sep;215(3):553–559. doi: 10.1152/ajplegacy.1968.215.3.553. [DOI] [PubMed] [Google Scholar]
  18. Greenway C. V., Oshiro G. Intrahepatic distribution of portal and hepatic arterial blood flows in anaesthetized cats and dogs and the effects of portal occlusion, raised venous pressure and histamine. J Physiol. 1972 Dec;227(2):473–485. doi: 10.1113/jphysiol.1972.sp010043. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Greenway C. V., Stark R. D. Hepatic vascular bed. Physiol Rev. 1971 Jan;51(1):23–65. doi: 10.1152/physrev.1971.51.1.23. [DOI] [PubMed] [Google Scholar]
  20. Griffen S. C., Russell S. M., Katz L. S., Nicoll C. S. Insulin exerts metabolic and growth-promoting effects by a direct action on the liver in vivo: clarification of the functional significance of the portal vascular link between the beta cells of the pancreatic islets and the liver. Proc Natl Acad Sci U S A. 1987 Oct;84(20):7300–7304. doi: 10.1073/pnas.84.20.7300. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Hother-Nielsen O., Mengel A., Møller J., Rasmussen O., Schmitz O., Beck-Nielsen H. Assessment of glucose turnover rates in euglycaemic clamp studies using primed-constant [3-3H]-glucose infusion and labelled or unlabelled glucose infusates. Diabet Med. 1992 Nov;9(9):840–849. doi: 10.1111/j.1464-5491.1992.tb01903.x. [DOI] [PubMed] [Google Scholar]
  22. Ishida T., Chap Z., Chou J., Lewis R. M., Hartley C. J., Entman M. L., Field J. B. Effects of portal and peripheral venous insulin infusion on glucose production and utilization in depancreatized, conscious dogs. Diabetes. 1984 Oct;33(10):984–990. doi: 10.2337/diab.33.10.984. [DOI] [PubMed] [Google Scholar]
  23. Iynedjian P. B., Marie S., Gjinovci A., Genin B., Deng S. P., Buhler L., Morel P., Mentha G. Glucokinase and cytosolic phosphoenolpyruvate carboxykinase (GTP) in the human liver. Regulation of gene expression in cultured hepatocytes. J Clin Invest. 1995 May;95(5):1966–1973. doi: 10.1172/JCI117880. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Katz J., Okajima F., Chenoweth M., Dunn A. The determination of lactate turnover in vivo with 3H- and 14C-labelled lactate. The significance of sites of tracer administration and sampling. Biochem J. 1981 Feb 15;194(2):513–524. doi: 10.1042/bj1940513. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. LEVINE R., FRITZ I. B. The relation of insulin to liver metabolism. Diabetes. 1956 May-Jun;5(3):209-19; discussion, 219-22. doi: 10.2337/diab.5.3.209. [DOI] [PubMed] [Google Scholar]
  26. Lefebvre P. J., Luyckx A. S. Glucagon and diabetes: a reappraisal. Diabetologia. 1979 Jun;16(6):347–354. doi: 10.1007/BF01223153. [DOI] [PubMed] [Google Scholar]
  27. Lewis G. F., Vranic M., Giacca A. Glucagon enhances the direct suppressive effect of insulin on hepatic glucose production in humans. Am J Physiol. 1997 Mar;272(3 Pt 1):E371–E378. doi: 10.1152/ajpendo.1997.272.3.E371. [DOI] [PubMed] [Google Scholar]
  28. Lewis G. F., Zinman B., Groenewoud Y., Vranic M., Giacca A. Hepatic glucose production is regulated both by direct hepatic and extrahepatic effects of insulin in humans. Diabetes. 1996 Apr;45(4):454–462. doi: 10.2337/diab.45.4.454. [DOI] [PubMed] [Google Scholar]
  29. MADISON L. L., COMBES B., STRICKLAND W., UNGER R., ADAMS R. Evidence for a direct effect of insulin on hepatic glucose output. Metabolism. 1959 Jul 2;8(4 Pt 2):469–471. [PubMed] [Google Scholar]
  30. Mackrell D. J., Sokal J. E. Antagonism between the effects of insulin and glucagon on the isolated liver. Diabetes. 1969 Nov;18(11):724–732. doi: 10.2337/diab.18.11.724. [DOI] [PubMed] [Google Scholar]
  31. Magnusson I., Rothman D. L., Gerard D. P., Katz L. D., Shulman G. I. Contribution of hepatic glycogenolysis to glucose production in humans in response to a physiological increase in plasma glucagon concentration. Diabetes. 1995 Feb;44(2):185–189. doi: 10.2337/diab.44.2.185. [DOI] [PubMed] [Google Scholar]
  32. Marliss E. B., Aoki T. T., Unger R. H., Soeldner J. S., Cahill G. F., Jr Glucagon levels and metabolic effects in fasting man. J Clin Invest. 1970 Dec;49(12):2256–2270. doi: 10.1172/JCI106445. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Morand C., Remesy C., Demigne C. Fatty acids are potent modulators of lactate utilization in isolated hepatocytes from fed rats. Am J Physiol. 1993 May;264(5 Pt 1):E816–E823. doi: 10.1152/ajpendo.1993.264.5.E816. [DOI] [PubMed] [Google Scholar]
  34. Pak J. M., Lee S. S. Glucagon in portal hypertension. J Hepatol. 1994 Jun;20(6):825–832. doi: 10.1016/s0168-8278(05)80156-4. [DOI] [PubMed] [Google Scholar]
  35. Polonsky K., Jaspan J., Emmanouel D., Holmes K., Moossa A. R. Differences in the hepatic and renal extraction of insulin and glucagon in the dog: evidence for saturability of insulin metabolism. Acta Endocrinol (Copenh) 1983 Mar;102(3):420–427. doi: 10.1530/acta.0.1020420. [DOI] [PubMed] [Google Scholar]
  36. Prager R., Wallace P., Olefsky J. M. Direct and indirect effects of insulin to inhibit hepatic glucose output in obese subjects. Diabetes. 1987 May;36(5):607–611. doi: 10.2337/diab.36.5.607. [DOI] [PubMed] [Google Scholar]
  37. Rebrin K., Steil G. M., Getty L., Bergman R. N. Free fatty acid as a link in the regulation of hepatic glucose output by peripheral insulin. Diabetes. 1995 Sep;44(9):1038–1045. doi: 10.2337/diab.44.9.1038. [DOI] [PubMed] [Google Scholar]
  38. Rebrin K., Steil G. M., Mittelman S. D., Bergman R. N. Causal linkage between insulin suppression of lipolysis and suppression of liver glucose output in dogs. J Clin Invest. 1996 Aug 1;98(3):741–749. doi: 10.1172/JCI118846. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Rizza R. A., Westland R. E., Hall L. D., Patton G. S., Haymond M. W., Clemens A. H., Gerich J. E., Service F. J. Effect of peripheral versus portal venous administration of insulin on postprandial hyperglycemia and glucose turnover in alloxan-diabetic dogs. Mayo Clin Proc. 1981 Jul;56(7):434–438. [PubMed] [Google Scholar]
  40. Sindelar D. K., Balcom J. H., Chu C. A., Neal D. W., Cherrington A. D. A comparison of the effects of selective increases in peripheral or portal insulin on hepatic glucose production in the conscious dog. Diabetes. 1996 Nov;45(11):1594–1604. doi: 10.2337/diab.45.11.1594. [DOI] [PubMed] [Google Scholar]
  41. Sindelar D. K., Chu C. A., Rohlie M., Neal D. W., Swift L. L., Cherrington A. D. The role of fatty acids in mediating the effects of peripheral insulin on hepatic glucose production in the conscious dog. Diabetes. 1997 Feb;46(2):187–196. doi: 10.2337/diab.46.2.187. [DOI] [PubMed] [Google Scholar]
  42. Stevenson R. W., Parsons J. A., Alberti K. G. Effect of intraportal and peripheral insulin on glucose turnover and recycling in diabetic dogs. Am J Physiol. 1983 Feb;244(2):E190–E195. doi: 10.1152/ajpendo.1983.244.2.E190. [DOI] [PubMed] [Google Scholar]
  43. Stumvoll M., Chintalapudi U., Perriello G., Welle S., Gutierrez O., Gerich J. Uptake and release of glucose by the human kidney. Postabsorptive rates and responses to epinephrine. J Clin Invest. 1995 Nov;96(5):2528–2533. doi: 10.1172/JCI118314. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Sánchez-Gutiérrez J. C., Sánchez-Arias J. A., Lechuga C. G., Valle J. C., Samper B., Felíu J. E. Decreased responsiveness of basal gluconeogenesis to insulin action in hepatocytes isolated from genetically obese (fa/fa) Zucker rats. Endocrinology. 1994 Apr;134(4):1868–1873. doi: 10.1210/endo.134.4.8137754. [DOI] [PubMed] [Google Scholar]
  45. Williamson J. R., Garcia A., Renold A. E., Cahill G. F., Jr Studies on the perfused rat liver. I. Effects of glucagon and insulin on glucose metabolism. Diabetes. 1966 Mar;15(3):183–187. doi: 10.2337/diab.15.3.183. [DOI] [PubMed] [Google Scholar]
  46. Williamson J. R., Kreisberg R. A., Felts P. W. Mechanism for the stimulation of gluconeogenesis by fatty acids in perfused rat liver. Proc Natl Acad Sci U S A. 1966 Jul;56(1):247–254. doi: 10.1073/pnas.56.1.247. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Yu B., Pugazhenthi S., Khandelwal R. L. Effects of metformin on glucose and glucagon regulated gluconeogenesis in cultured normal and diabetic hepatocytes. Biochem Pharmacol. 1994 Aug 30;48(5):949–954. doi: 10.1016/0006-2952(94)90365-4. [DOI] [PubMed] [Google Scholar]
  48. Zambon A., Hashimoto S. I., Brunzell J. D. Analysis of techniques to obtain plasma for measurement of levels of free fatty acids. J Lipid Res. 1993 Jun;34(6):1021–1028. [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES