Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1997 Dec 15;100(12):3131–3139. doi: 10.1172/JCI119868

Nitric oxide production contributes to the angiogenic properties of vascular endothelial growth factor in human endothelial cells.

A Papapetropoulos 1, G García-Cardeña 1, J A Madri 1, W C Sessa 1
PMCID: PMC508526  PMID: 9399960

Abstract

Vascular endothelial growth factor (VEGF) is a regulator of vasculogenesis and angiogenesis. To investigate the role of nitric oxide (NO) in VEGF-induced proliferation and in vitro angiogenesis, human umbilical vein endothelial cells (HUVEC) were used. VEGF stimulated the growth of HUVEC in an NO-dependent manner. In addition, VEGF promoted the NO-dependent formation of network-like structures in HUVEC cultured in three dimensional (3D) collagen gels. Exposure of cells to VEGF led to a concentration-dependent increase in cGMP levels, an indicator of NO production, that was inhibited by nitro-L-arginine methyl ester. VEGF-stimulated NO production required activation of tyrosine kinases and increases in intracellular calcium, since tyrosine kinase inhibitors and calcium chelators attenuated VEGF-induced NO release. Moreover, two chemically distinct phosphoinositide 3 kinase (PI-3K) inhibitors attenuated NO release after VEGF stimulation. In addition, HUVEC incubated with VEGF for 24 h showed an increase in the amount of endothelial NO synthase (eNOS) protein and the release of NO. In summary, both short- and long-term exposure of human EC to VEGF stimulates the release of biologically active NO. While long-term exposure increases eNOS protein levels, short-term stimulation with VEGF promotes NO release through mechanisms involving tyrosine and PI-3K kinases, suggesting that NO mediates aspects of VEGF signaling required for EC proliferation and organization in vitro.

Full Text

The Full Text of this article is available as a PDF (349.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abedi H., Zachary I. Vascular endothelial growth factor stimulates tyrosine phosphorylation and recruitment to new focal adhesions of focal adhesion kinase and paxillin in endothelial cells. J Biol Chem. 1997 Jun 13;272(24):15442–15451. doi: 10.1074/jbc.272.24.15442. [DOI] [PubMed] [Google Scholar]
  2. Akiyama T., Ishida J., Nakagawa S., Ogawara H., Watanabe S., Itoh N., Shibuya M., Fukami Y. Genistein, a specific inhibitor of tyrosine-specific protein kinases. J Biol Chem. 1987 Apr 25;262(12):5592–5595. [PubMed] [Google Scholar]
  3. Andrade S. P., Hart I. R., Piper P. J. Inhibitors of nitric oxide synthase selectively reduce flow in tumor-associated neovasculature. Br J Pharmacol. 1992 Dec;107(4):1092–1095. doi: 10.1111/j.1476-5381.1992.tb13412.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Ayajiki K., Kindermann M., Hecker M., Fleming I., Busse R. Intracellular pH and tyrosine phosphorylation but not calcium determine shear stress-induced nitric oxide production in native endothelial cells. Circ Res. 1996 May;78(5):750–758. doi: 10.1161/01.res.78.5.750. [DOI] [PubMed] [Google Scholar]
  5. Barleon B., Hauser S., Schöllmann C., Weindel K., Marmé D., Yayon A., Weich H. A. Differential expression of the two VEGF receptors flt and KDR in placenta and vascular endothelial cells. J Cell Biochem. 1994 Jan;54(1):56–66. doi: 10.1002/jcb.240540107. [DOI] [PubMed] [Google Scholar]
  6. Berridge M. J., Irvine R. F. Inositol phosphates and cell signalling. Nature. 1989 Sep 21;341(6239):197–205. doi: 10.1038/341197a0. [DOI] [PubMed] [Google Scholar]
  7. Brock T. A., Dvorak H. F., Senger D. R. Tumor-secreted vascular permeability factor increases cytosolic Ca2+ and von Willebrand factor release in human endothelial cells. Am J Pathol. 1991 Jan;138(1):213–221. [PMC free article] [PubMed] [Google Scholar]
  8. Brown L. F., Detmar M., Claffey K., Nagy J. A., Feng D., Dvorak A. M., Dvorak H. F. Vascular permeability factor/vascular endothelial growth factor: a multifunctional angiogenic cytokine. EXS. 1997;79:233–269. doi: 10.1007/978-3-0348-9006-9_10. [DOI] [PubMed] [Google Scholar]
  9. Brown L. F., Detmar M., Tognazzi K., Abu-Jawdeh G., Iruela-Arispe M. L. Uterine smooth muscle cells express functional receptors (flt-1 and KDR) for vascular permeability factor/vascular endothelial growth factor. Lab Invest. 1997 Feb;76(2):245–255. [PubMed] [Google Scholar]
  10. Carmeliet P., Ferreira V., Breier G., Pollefeyt S., Kieckens L., Gertsenstein M., Fahrig M., Vandenhoeck A., Harpal K., Eberhardt C. Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele. Nature. 1996 Apr 4;380(6573):435–439. doi: 10.1038/380435a0. [DOI] [PubMed] [Google Scholar]
  11. Carpenter C. L., Cantley L. C. Phosphoinositide 3-kinase and the regulation of cell growth. Biochim Biophys Acta. 1996 Aug 8;1288(1):M11–M16. doi: 10.1016/0304-419x(96)00018-2. [DOI] [PubMed] [Google Scholar]
  12. Carpenter C. L., Cantley L. C. Phosphoinositide kinases. Curr Opin Cell Biol. 1996 Apr;8(2):153–158. doi: 10.1016/s0955-0674(96)80060-3. [DOI] [PubMed] [Google Scholar]
  13. Clauss M., Weich H., Breier G., Knies U., Röckl W., Waltenberger J., Risau W. The vascular endothelial growth factor receptor Flt-1 mediates biological activities. Implications for a functional role of placenta growth factor in monocyte activation and chemotaxis. J Biol Chem. 1996 Jul 26;271(30):17629–17634. doi: 10.1074/jbc.271.30.17629. [DOI] [PubMed] [Google Scholar]
  14. Derman M. P., Toker A., Hartwig J. H., Spokes K., Falck J. R., Chen C. S., Cantley L. C., Cantley L. G. The lipid products of phosphoinositide 3-kinase increase cell motility through protein kinase C. J Biol Chem. 1997 Mar 7;272(10):6465–6470. doi: 10.1074/jbc.272.10.6465. [DOI] [PubMed] [Google Scholar]
  15. Ferrara N., Carver-Moore K., Chen H., Dowd M., Lu L., O'Shea K. S., Powell-Braxton L., Hillan K. J., Moore M. W. Heterozygous embryonic lethality induced by targeted inactivation of the VEGF gene. Nature. 1996 Apr 4;380(6573):439–442. doi: 10.1038/380439a0. [DOI] [PubMed] [Google Scholar]
  16. Ferrara N., Houck K., Jakeman L., Leung D. W. Molecular and biological properties of the vascular endothelial growth factor family of proteins. Endocr Rev. 1992 Feb;13(1):18–32. doi: 10.1210/edrv-13-1-18. [DOI] [PubMed] [Google Scholar]
  17. Ferrara N. Vascular endothelial growth factor. Eur J Cancer. 1996 Dec;32A(14):2413–2422. doi: 10.1016/s0959-8049(96)00387-5. [DOI] [PubMed] [Google Scholar]
  18. Fleming I., Fisslthaler B., Busse R. Calcium signaling in endothelial cells involves activation of tyrosine kinases and leads to activation of mitogen-activated protein kinases. Circ Res. 1995 Apr;76(4):522–529. doi: 10.1161/01.res.76.4.522. [DOI] [PubMed] [Google Scholar]
  19. Fleming I., Fisslthaler B., Busse R. Interdependence of calcium signaling and protein tyrosine phosphorylation in human endothelial cells. J Biol Chem. 1996 May 3;271(18):11009–11015. doi: 10.1074/jbc.271.18.11009. [DOI] [PubMed] [Google Scholar]
  20. Fong G. H., Rossant J., Gertsenstein M., Breitman M. L. Role of the Flt-1 receptor tyrosine kinase in regulating the assembly of vascular endothelium. Nature. 1995 Jul 6;376(6535):66–70. doi: 10.1038/376066a0. [DOI] [PubMed] [Google Scholar]
  21. Franke T. F., Kaplan D. R., Cantley L. C. PI3K: downstream AKTion blocks apoptosis. Cell. 1997 Feb 21;88(4):435–437. doi: 10.1016/s0092-8674(00)81883-8. [DOI] [PubMed] [Google Scholar]
  22. Goto F., Goto K., Weindel K., Folkman J. Synergistic effects of vascular endothelial growth factor and basic fibroblast growth factor on the proliferation and cord formation of bovine capillary endothelial cells within collagen gels. Lab Invest. 1993 Nov;69(5):508–517. [PubMed] [Google Scholar]
  23. Guo D., Jia Q., Song H. Y., Warren R. S., Donner D. B. Vascular endothelial cell growth factor promotes tyrosine phosphorylation of mediators of signal transduction that contain SH2 domains. Association with endothelial cell proliferation. J Biol Chem. 1995 Mar 24;270(12):6729–6733. doi: 10.1074/jbc.270.12.6729. [DOI] [PubMed] [Google Scholar]
  24. Hewett P. W., Murray J. C. Coexpression of flt-1, flt-4 and KDR in freshly isolated and cultured human endothelial cells. Biochem Biophys Res Commun. 1996 Apr 25;221(3):697–702. doi: 10.1006/bbrc.1996.0659. [DOI] [PubMed] [Google Scholar]
  25. Inoue N., Venema R. C., Sayegh H. S., Ohara Y., Murphy T. J., Harrison D. G. Molecular regulation of the bovine endothelial cell nitric oxide synthase by transforming growth factor-beta 1. Arterioscler Thromb Vasc Biol. 1995 Aug;15(8):1255–1261. doi: 10.1161/01.atv.15.8.1255. [DOI] [PubMed] [Google Scholar]
  26. Jenkins D. C., Charles I. G., Thomsen L. L., Moss D. W., Holmes L. S., Baylis S. A., Rhodes P., Westmore K., Emson P. C., Moncada S. Roles of nitric oxide in tumor growth. Proc Natl Acad Sci U S A. 1995 May 9;92(10):4392–4396. doi: 10.1073/pnas.92.10.4392. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Johnson G. L., Vaillancourt R. R. Sequential protein kinase reactions controlling cell growth and differentiation. Curr Opin Cell Biol. 1994 Apr;6(2):230–238. doi: 10.1016/0955-0674(94)90141-4. [DOI] [PubMed] [Google Scholar]
  28. Kanno K., Hirata Y., Imai T., Iwashina M., Marumo F. Regulation of inducible nitric oxide synthase gene by interleukin-1 beta in rat vascular endothelial cells. Am J Physiol. 1994 Dec;267(6 Pt 2):H2318–H2324. doi: 10.1152/ajpheart.1994.267.6.H2318. [DOI] [PubMed] [Google Scholar]
  29. Konturek S. J., Brzozowski T., Majka J., Pytko-Polonczyk J., Stachura J. Inhibition of nitric oxide synthase delays healing of chronic gastric ulcers. Eur J Pharmacol. 1993 Aug 3;239(1-3):215–217. doi: 10.1016/0014-2999(93)90997-v. [DOI] [PubMed] [Google Scholar]
  30. Ku D. D., Zaleski J. K., Liu S., Brock T. A. Vascular endothelial growth factor induces EDRF-dependent relaxation in coronary arteries. Am J Physiol. 1993 Aug;265(2 Pt 2):H586–H592. doi: 10.1152/ajpheart.1993.265.2.H586. [DOI] [PubMed] [Google Scholar]
  31. Leibovich S. J., Polverini P. J., Fong T. W., Harlow L. A., Koch A. E. Production of angiogenic activity by human monocytes requires an L-arginine/nitric oxide-synthase-dependent effector mechanism. Proc Natl Acad Sci U S A. 1994 May 10;91(10):4190–4194. doi: 10.1073/pnas.91.10.4190. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Liu J., García-Cardeña G., Sessa W. C. Palmitoylation of endothelial nitric oxide synthase is necessary for optimal stimulated release of nitric oxide: implications for caveolae localization. Biochemistry. 1996 Oct 15;35(41):13277–13281. doi: 10.1021/bi961720e. [DOI] [PubMed] [Google Scholar]
  33. Marczin N., Papapetropoulos A., Catravas J. D. Tyrosine kinase inhibitors suppress endotoxin- and IL-1 beta-induced NO synthesis in aortic smooth muscle cells. Am J Physiol. 1993 Sep;265(3 Pt 2):H1014–H1018. doi: 10.1152/ajpheart.1993.265.3.H1014. [DOI] [PubMed] [Google Scholar]
  34. Moncada S., Palmer R. M., Higgs E. A. Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol Rev. 1991 Jun;43(2):109–142. [PubMed] [Google Scholar]
  35. Montesano R., Orci L. Tumor-promoting phorbol esters induce angiogenesis in vitro. Cell. 1985 Sep;42(2):469–477. doi: 10.1016/0092-8674(85)90104-7. [DOI] [PubMed] [Google Scholar]
  36. Morbidelli L., Chang C. H., Douglas J. G., Granger H. J., Ledda F., Ziche M. Nitric oxide mediates mitogenic effect of VEGF on coronary venular endothelium. Am J Physiol. 1996 Jan;270(1 Pt 2):H411–H415. doi: 10.1152/ajpheart.1996.270.1.H411. [DOI] [PubMed] [Google Scholar]
  37. Muller J. M., Davis M. J., Chilian W. M. Coronary arteriolar flow-induced vasodilation signals through tyrosine kinase. Am J Physiol. 1996 Jun;270(6 Pt 2):H1878–H1884. doi: 10.1152/ajpheart.1996.270.6.H1878. [DOI] [PubMed] [Google Scholar]
  38. Noiri E., Hu Y., Bahou W. F., Keese C. R., Giaever I., Goligorsky M. S. Permissive role of nitric oxide in endothelin-induced migration of endothelial cells. J Biol Chem. 1997 Jan 17;272(3):1747–1752. doi: 10.1074/jbc.272.3.1747. [DOI] [PubMed] [Google Scholar]
  39. Oikawa T., Ashino H., Shimamura M., Hasegawa M., Morita I., Murota S., Ishizuka M., Takeuchi T. Inhibition of angiogenesis by erbstatin, an inhibitor of tyrosine kinase. J Antibiot (Tokyo) 1993 May;46(5):785–790. doi: 10.7164/antibiotics.46.785. [DOI] [PubMed] [Google Scholar]
  40. Oikawa T., Shimamura M. Potent inhibition of angiogenesis by wortmannin, a fungal metabolite. Eur J Pharmacol. 1996 Dec 27;318(1):93–96. doi: 10.1016/s0014-2999(96)00864-3. [DOI] [PubMed] [Google Scholar]
  41. Papapetropoulos A., Cziraki A., Rubin J. W., Stone C. D., Catravas J. D. cGMP accumulation and gene expression of soluble guanylate cyclase in human vascular tissue. J Cell Physiol. 1996 May;167(2):213–221. doi: 10.1002/(SICI)1097-4652(199605)167:2<213::AID-JCP4>3.0.CO;2-S. [DOI] [PubMed] [Google Scholar]
  42. Papapetropoulos A., Desai K. M., Rudic R. D., Mayer B., Zhang R., Ruiz-Torres M. P., García-Cardeña G., Madri J. A., Sessa W. C. Nitric oxide synthase inhibitors attenuate transforming-growth-factor-beta 1-stimulated capillary organization in vitro. Am J Pathol. 1997 May;150(5):1835–1844. [PMC free article] [PubMed] [Google Scholar]
  43. Papapetropoulos A., Marczin N., Snead M. D., Cheng C., Milici A., Catravas J. D. Smooth muscle cell responsiveness to nitrovasodilators in hypertensive and normotensive rats. Hypertension. 1994 Apr;23(4):476–484. doi: 10.1161/01.hyp.23.4.476. [DOI] [PubMed] [Google Scholar]
  44. Pawson T. Non-catalytic domains of cytoplasmic protein-tyrosine kinases: regulatory elements in signal transduction. Oncogene. 1988 Nov;3(5):491–495. [PubMed] [Google Scholar]
  45. Pipili-Synetos E., Sakkoula E., Haralabopoulos G., Andriopoulou P., Peristeris P., Maragoudakis M. E. Evidence that nitric oxide is an endogenous antiangiogenic mediator. Br J Pharmacol. 1994 Mar;111(3):894–902. doi: 10.1111/j.1476-5381.1994.tb14822.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Rooman I., Schuit F., Bouwens L. Effect of vascular endothelial growth factor on growth and differentiation of pancreatic ductal epithelium. Lab Invest. 1997 Feb;76(2):225–232. [PubMed] [Google Scholar]
  47. Rosenkranz-Weiss P., Sessa W. C., Milstien S., Kaufman S., Watson C. A., Pober J. S. Regulation of nitric oxide synthesis by proinflammatory cytokines in human umbilical vein endothelial cells. Elevations in tetrahydrobiopterin levels enhance endothelial nitric oxide synthase specific activity. J Clin Invest. 1994 May;93(5):2236–2243. doi: 10.1172/JCI117221. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Sankar S., Mahooti-Brooks N., Bensen L., McCarthy T. L., Centrella M., Madri J. A. Modulation of transforming growth factor beta receptor levels on microvascular endothelial cells during in vitro angiogenesis. J Clin Invest. 1996 Mar 15;97(6):1436–1446. doi: 10.1172/JCI118565. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Sessa W. C., García-Cardeña G., Liu J., Keh A., Pollock J. S., Bradley J., Thiru S., Braverman I. M., Desai K. M. The Golgi association of endothelial nitric oxide synthase is necessary for the efficient synthesis of nitric oxide. J Biol Chem. 1995 Jul 28;270(30):17641–17644. doi: 10.1074/jbc.270.30.17641. [DOI] [PubMed] [Google Scholar]
  50. Sessa W. C. The nitric oxide synthase family of proteins. J Vasc Res. 1994 May-Jun;31(3):131–143. doi: 10.1159/000159039. [DOI] [PubMed] [Google Scholar]
  51. Shalaby F., Rossant J., Yamaguchi T. P., Gertsenstein M., Wu X. F., Breitman M. L., Schuh A. C. Failure of blood-island formation and vasculogenesis in Flk-1-deficient mice. Nature. 1995 Jul 6;376(6535):62–66. doi: 10.1038/376062a0. [DOI] [PubMed] [Google Scholar]
  52. Shibuya M. Role of VEGF-flt receptor system in normal and tumor angiogenesis. Adv Cancer Res. 1995;67:281–316. doi: 10.1016/s0065-230x(08)60716-2. [DOI] [PubMed] [Google Scholar]
  53. Terman B. I., Dougher-Vermazen M., Carrion M. E., Dimitrov D., Armellino D. C., Gospodarowicz D., Böhlen P. Identification of the KDR tyrosine kinase as a receptor for vascular endothelial cell growth factor. Biochem Biophys Res Commun. 1992 Sep 30;187(3):1579–1586. doi: 10.1016/0006-291x(92)90483-2. [DOI] [PubMed] [Google Scholar]
  54. Thomas K. A. Vascular endothelial growth factor, a potent and selective angiogenic agent. J Biol Chem. 1996 Jan 12;271(2):603–606. doi: 10.1074/jbc.271.2.603. [DOI] [PubMed] [Google Scholar]
  55. Tsukahara H., Gordienko D. V., Tonshoff B., Gelato M. C., Goligorsky M. S. Direct demonstration of insulin-like growth factor-I-induced nitric oxide production by endothelial cells. Kidney Int. 1994 Feb;45(2):598–604. doi: 10.1038/ki.1994.78. [DOI] [PubMed] [Google Scholar]
  56. Waltenberger J., Claesson-Welsh L., Siegbahn A., Shibuya M., Heldin C. H. Different signal transduction properties of KDR and Flt1, two receptors for vascular endothelial growth factor. J Biol Chem. 1994 Oct 28;269(43):26988–26995. [PubMed] [Google Scholar]
  57. Wu H. M., Huang Q., Yuan Y., Granger H. J. VEGF induces NO-dependent hyperpermeability in coronary venules. Am J Physiol. 1996 Dec;271(6 Pt 2):H2735–H2739. doi: 10.1152/ajpheart.1996.271.6.H2735. [DOI] [PubMed] [Google Scholar]
  58. Xia P., Aiello L. P., Ishii H., Jiang Z. Y., Park D. J., Robinson G. S., Takagi H., Newsome W. P., Jirousek M. R., King G. L. Characterization of vascular endothelial growth factor's effect on the activation of protein kinase C, its isoforms, and endothelial cell growth. J Clin Invest. 1996 Nov 1;98(9):2018–2026. doi: 10.1172/JCI119006. [DOI] [PMC free article] [PubMed] [Google Scholar]
  59. Yang R., Thomas G. R., Bunting S., Ko A., Ferrara N., Keyt B., Ross J., Jin H. Effects of vascular endothelial growth factor on hemodynamics and cardiac performance. J Cardiovasc Pharmacol. 1996 Jun;27(6):838–844. doi: 10.1097/00005344-199606000-00011. [DOI] [PubMed] [Google Scholar]
  60. Zeng G., Quon M. J. Insulin-stimulated production of nitric oxide is inhibited by wortmannin. Direct measurement in vascular endothelial cells. J Clin Invest. 1996 Aug 15;98(4):894–898. doi: 10.1172/JCI118871. [DOI] [PMC free article] [PubMed] [Google Scholar]
  61. Ziche M., Morbidelli L., Choudhuri R., Zhang H. T., Donnini S., Granger H. J., Bicknell R. Nitric oxide synthase lies downstream from vascular endothelial growth factor-induced but not basic fibroblast growth factor-induced angiogenesis. J Clin Invest. 1997 Jun 1;99(11):2625–2634. doi: 10.1172/JCI119451. [DOI] [PMC free article] [PubMed] [Google Scholar]
  62. Ziche M., Morbidelli L., Masini E., Amerini S., Granger H. J., Maggi C. A., Geppetti P., Ledda F. Nitric oxide mediates angiogenesis in vivo and endothelial cell growth and migration in vitro promoted by substance P. J Clin Invest. 1994 Nov;94(5):2036–2044. doi: 10.1172/JCI117557. [DOI] [PMC free article] [PubMed] [Google Scholar]
  63. de Vries C., Escobedo J. A., Ueno H., Houck K., Ferrara N., Williams L. T. The fms-like tyrosine kinase, a receptor for vascular endothelial growth factor. Science. 1992 Feb 21;255(5047):989–991. doi: 10.1126/science.1312256. [DOI] [PubMed] [Google Scholar]
  64. van der Zee R., Murohara T., Luo Z., Zollmann F., Passeri J., Lekutat C., Isner J. M. Vascular endothelial growth factor/vascular permeability factor augments nitric oxide release from quiescent rabbit and human vascular endothelium. Circulation. 1997 Feb 18;95(4):1030–1037. doi: 10.1161/01.cir.95.4.1030. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES