Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1998 Jan 1;101(1):15–21. doi: 10.1172/JCI1228

Role of inducible nitric oxide synthase in regulation of pulmonary vascular tone in the late gestation ovine fetus.

R L Rairigh 1, T D Le Cras 1, D D Ivy 1, J P Kinsella 1, G Richter 1, M P Horan 1, I D Fan 1, S H Abman 1
PMCID: PMC508535  PMID: 9421461

Abstract

Nitric oxide (NO) produced by NO synthase (NOS) modulates fetal pulmonary vascular tone and contributes to the fall in pulmonary vascular resistance (PVR) at birth. Although the inducible (type II) NOS isoform is present in human and rat fetal lungs, it is uncertain whether type II NOS activity contributes to vascular NO production in the fetal lung. To determine whether type II NOS is present in the ovine fetal lung and to study the potential contribution of type II NOS on the regulation of basal PVR in the fetus, we measured the hemodynamic effects of three selective type II NOS antagonists: aminoguanidine (AG), 2-amino-5,6-dihydro-6-methyl-4H-1,3 thiazine (AMT), and S-ethylisothiourea (EIT). Studies were performed after at least 72 h of recovery from surgery in 19 chronically prepared fetal lambs (133+/-3 d; 147 d, term). Brief intrapulmonary infusions of AG (140 mg), AMT (0.12 mg), and EIT (0.12 mg) increased basal PVR by 82, 69, and 77%, respectively (P < 0.05). The maximum increase in PVR occurred within 20 min, but often persisted up to 80 min. These agents also increased mean aortic pressure but did not alter the pressure gradient between the pulmonary artery and aorta, suggesting little effect on tone of the ductus arteriosus. Acetylcholine-induced pulmonary vasodilation remained intact after treatment with selective type II NOS antagonists, but not after treatment with the nonselective NOS blocker, nitro-L-arginine. Using Northern blot analysis with poly(A)+ RNA, we demonstrated the presence of two mRNA transcripts for type II NOS (4.1 and 2.6 kb) in the fetal lung. We conclude that the type II NOS isoform is present in the ovine fetal lung, and that selective type II NOS antagonists increase PVR and systemic arterial pressure in the late-gestation fetus. We speculate that type II NOS may play a physiological role in the modulation of vascular tone in the developing fetal lung.

Full Text

The Full Text of this article is available as a PDF (204.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abman S. H., Chatfield B. A., Hall S. L., McMurtry I. F. Role of endothelium-derived relaxing factor during transition of pulmonary circulation at birth. Am J Physiol. 1990 Dec;259(6 Pt 2):H1921–H1927. doi: 10.1152/ajpheart.1990.259.6.H1921. [DOI] [PubMed] [Google Scholar]
  2. Abman S. H., Chatfield B. A., Rodman D. M., Hall S. L., McMurtry I. F. Maturational changes in endothelium-derived relaxing factor activity of ovine pulmonary arteries in vitro. Am J Physiol. 1991 Apr;260(4 Pt 1):L280–L285. doi: 10.1152/ajplung.1991.260.4.L280. [DOI] [PubMed] [Google Scholar]
  3. Bustamante S. A., Pang Y., Romero S., Pierce M. R., Voelker C. A., Thompson J. H., Sandoval M., Liu X., Miller M. J. Inducible nitric oxide synthase and the regulation of central vessel caliber in the fetal rat. Circulation. 1996 Oct 15;94(8):1948–1953. doi: 10.1161/01.cir.94.8.1948. [DOI] [PubMed] [Google Scholar]
  4. Calaycay J. R., Kelly T. M., MacNaul K. L., McCauley E. D., Qi H., Grant S. K., Griffin P. R., Klatt T., Raju S. M., Nussler A. K. Expression and immunoaffinity purification of human inducible nitric-oxide synthase. Inhibition studies with 2-amino-5,6-dihydro-4H-1,3-thiazine. J Biol Chem. 1996 Nov 8;271(45):28212–28219. doi: 10.1074/jbc.271.45.28212. [DOI] [PubMed] [Google Scholar]
  5. Chomczynski P. A reagent for the single-step simultaneous isolation of RNA, DNA and proteins from cell and tissue samples. Biotechniques. 1993 Sep;15(3):532-4, 536-7. [PubMed] [Google Scholar]
  6. Corbett J. A., Mikhael A., Shimizu J., Frederick K., Misko T. P., McDaniel M. L., Kanagawa O., Unanue E. R. Nitric oxide production in islets from nonobese diabetic mice: aminoguanidine-sensitive and -resistant stages in the immunological diabetic process. Proc Natl Acad Sci U S A. 1993 Oct 1;90(19):8992–8995. doi: 10.1073/pnas.90.19.8992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Corbett J. A., Tilton R. G., Chang K., Hasan K. S., Ido Y., Wang J. L., Sweetland M. A., Lancaster J. R., Jr, Williamson J. R., McDaniel M. L. Aminoguanidine, a novel inhibitor of nitric oxide formation, prevents diabetic vascular dysfunction. Diabetes. 1992 Apr;41(4):552–556. doi: 10.2337/diab.41.4.552. [DOI] [PubMed] [Google Scholar]
  8. Cornfield D. N., McQueston J. A., McMurtry I. F., Rodman D. M., Abman S. H. Role of ATP-sensitive potassium channels in ovine fetal pulmonary vascular tone. Am J Physiol. 1992 Nov;263(5 Pt 2):H1363–H1368. doi: 10.1152/ajpheart.1992.263.5.H1363. [DOI] [PubMed] [Google Scholar]
  9. Davidson D., Eldemerdash A. Endothelium-derived relaxing factor: evidence that it regulates pulmonary vascular resistance in the isolated neonatal guinea pig lung. Pediatr Res. 1991 Jun;29(6):538–542. doi: 10.1203/00006450-199106010-00004. [DOI] [PubMed] [Google Scholar]
  10. Farrell A. J., Blake D. R., Palmer R. M., Moncada S. Increased concentrations of nitrite in synovial fluid and serum samples suggest increased nitric oxide synthesis in rheumatic diseases. Ann Rheum Dis. 1992 Nov;51(11):1219–1222. doi: 10.1136/ard.51.11.1219. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Fineman J. R., Wong J., Morin F. C., 3rd, Wild L. M., Soifer S. J. Chronic nitric oxide inhibition in utero produces persistent pulmonary hypertension in newborn lambs. J Clin Invest. 1994 Jun;93(6):2675–2683. doi: 10.1172/JCI117281. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Förstermann U., Kleinert H. Nitric oxide synthase: expression and expressional control of the three isoforms. Naunyn Schmiedebergs Arch Pharmacol. 1995 Oct;352(4):351–364. doi: 10.1007/BF00172772. [DOI] [PubMed] [Google Scholar]
  13. Garvey E. P., Oplinger J. A., Tanoury G. J., Sherman P. A., Fowler M., Marshall S., Harmon M. F., Paith J. E., Furfine E. S. Potent and selective inhibition of human nitric oxide synthases. Inhibition by non-amino acid isothioureas. J Biol Chem. 1994 Oct 28;269(43):26669–26676. [PubMed] [Google Scholar]
  14. Griffiths M. J., Liu S., Curzen N. P., Messent M., Evans T. W. In vivo treatment with endotoxin induces nitric oxide synthase in rat main pulmonary artery. Am J Physiol. 1995 Mar;268(3 Pt 1):L509–L518. doi: 10.1152/ajplung.1995.268.3.L509. [DOI] [PubMed] [Google Scholar]
  15. Griffiths M. J., Messent M., MacAllister R. J., Evans T. W. Aminoguanidine selectively inhibits inducible nitric oxide synthase. Br J Pharmacol. 1993 Nov;110(3):963–968. doi: 10.1111/j.1476-5381.1993.tb13907.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Halbower A. C., Tuder R. M., Franklin W. A., Pollock J. S., Förstermann U., Abman S. H. Maturation-related changes in endothelial nitric oxide synthase immunolocalization in developing ovine lung. Am J Physiol. 1994 Nov;267(5 Pt 1):L585–L591. doi: 10.1152/ajplung.1994.267.5.L585. [DOI] [PubMed] [Google Scholar]
  17. Ivy D. D., Parker T. A., Ziegler J. W., Galan H. L., Kinsella J. P., Tuder R. M., Abman S. H. Prolonged endothelin A receptor blockade attenuates chronic pulmonary hypertension in the ovine fetus. J Clin Invest. 1997 Mar 15;99(6):1179–1186. doi: 10.1172/JCI119274. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Jansen A., Cook T., Taylor G. M., Largen P., Riveros-Moreno V., Moncada S., Cattell V. Induction of nitric oxide synthase in rat immune complex glomerulonephritis. Kidney Int. 1994 Apr;45(4):1215–1219. doi: 10.1038/ki.1994.161. [DOI] [PubMed] [Google Scholar]
  19. Joly G. A., Ayres M., Chelly F., Kilbourn R. G. Effects of NG-methyl-L-arginine, NG-nitro-L-arginine, and aminoguanidine on constitutive and inducible nitric oxide synthase in rat aorta. Biochem Biophys Res Commun. 1994 Feb 28;199(1):147–154. doi: 10.1006/bbrc.1994.1207. [DOI] [PubMed] [Google Scholar]
  20. Kilbourn R. G., Jubran A., Gross S. S., Griffith O. W., Levi R., Adams J., Lodato R. F. Reversal of endotoxin-mediated shock by NG-methyl-L-arginine, an inhibitor of nitric oxide synthesis. Biochem Biophys Res Commun. 1990 Nov 15;172(3):1132–1138. doi: 10.1016/0006-291x(90)91565-a. [DOI] [PubMed] [Google Scholar]
  21. Kobzik L., Bredt D. S., Lowenstein C. J., Drazen J., Gaston B., Sugarbaker D., Stamler J. S. Nitric oxide synthase in human and rat lung: immunocytochemical and histochemical localization. Am J Respir Cell Mol Biol. 1993 Oct;9(4):371–377. doi: 10.1165/ajrcmb/9.4.371. [DOI] [PubMed] [Google Scholar]
  22. Le Cras T. D., Xue C., Rengasamy A., Johns R. A. Chronic hypoxia upregulates endothelial and inducible NO synthase gene and protein expression in rat lung. Am J Physiol. 1996 Jan;270(1 Pt 1):L164–L170. doi: 10.1152/ajplung.1996.270.1.L164. [DOI] [PubMed] [Google Scholar]
  23. Lewis A. B., Heymann M. A., Rudolph A. M. Gestational changes in pulmonary vascular responses in fetal lambs in utero. Circ Res. 1976 Oct;39(4):536–541. doi: 10.1161/01.res.39.4.536. [DOI] [PubMed] [Google Scholar]
  24. Liu S., Adcock I. M., Old R. W., Barnes P. J., Evans T. W. Lipopolysaccharide treatment in vivo induces widespread tissue expression of inducible nitric oxide synthase mRNA. Biochem Biophys Res Commun. 1993 Nov 15;196(3):1208–1213. doi: 10.1006/bbrc.1993.2380. [DOI] [PubMed] [Google Scholar]
  25. McQueston J. A., Cornfield D. N., McMurtry I. F., Abman S. H. Effects of oxygen and exogenous L-arginine on EDRF activity in fetal pulmonary circulation. Am J Physiol. 1993 Mar;264(3 Pt 2):H865–H871. doi: 10.1152/ajpheart.1993.264.3.H865. [DOI] [PubMed] [Google Scholar]
  26. Nakane M., Klinghofer V., Kuk J. E., Donnelly J. L., Budzik G. P., Pollock J. S., Basha F., Carter G. W. Novel potent and selective inhibitors of inducible nitric oxide synthase. Mol Pharmacol. 1995 Apr;47(4):831–834. [PubMed] [Google Scholar]
  27. North A. J., Star R. A., Brannon T. S., Ujiie K., Wells L. B., Lowenstein C. J., Snyder S. H., Shaul P. W. Nitric oxide synthase type I and type III gene expression are developmentally regulated in rat lung. Am J Physiol. 1994 Jun;266(6 Pt 1):L635–L641. doi: 10.1152/ajplung.1994.266.6.L635. [DOI] [PubMed] [Google Scholar]
  28. Shaul P. W., Farrar M. A., Zellers T. M. Oxygen modulates endothelium-derived relaxing factor production in fetal pulmonary arteries. Am J Physiol. 1992 Feb;262(2 Pt 2):H355–H364. doi: 10.1152/ajpheart.1992.262.2.H355. [DOI] [PubMed] [Google Scholar]
  29. Southan G. J., Szabó C. Selective pharmacological inhibition of distinct nitric oxide synthase isoforms. Biochem Pharmacol. 1996 Feb 23;51(4):383–394. doi: 10.1016/0006-2952(95)02099-3. [DOI] [PubMed] [Google Scholar]
  30. Tiktinsky M. H., Morin F. C., 3rd Increasing oxygen tension dilates fetal pulmonary circulation via endothelium-derived relaxing factor. Am J Physiol. 1993 Jul;265(1 Pt 2):H376–H380. doi: 10.1152/ajpheart.1993.265.1.H376. [DOI] [PubMed] [Google Scholar]
  31. Tracey W. R., Nakane M., Basha F., Carter G. In vivo pharmacological evaluation of two novel type II (inducible) nitric oxide synthase inhibitors. Can J Physiol Pharmacol. 1995 May;73(5):665–669. doi: 10.1139/y95-085. [DOI] [PubMed] [Google Scholar]
  32. Villamor E., Le Cras T. D., Horan M. P., Halbower A. C., Tuder R. M., Abman S. H. Chronic intrauterine pulmonary hypertension impairs endothelial nitric oxide synthase in the ovine fetus. Am J Physiol. 1997 May;272(5 Pt 1):L1013–L1020. doi: 10.1152/ajplung.1997.272.5.L1013. [DOI] [PubMed] [Google Scholar]
  33. Yen M. H., Chen S. J., Wu C. C. Comparison of responses to aminoguanidine and N omega-nitro-L-arginine methyl ester in the rat aorta. Clin Exp Pharmacol Physiol. 1995 Sep;22(9):641–645. doi: 10.1111/j.1440-1681.1995.tb02081.x. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES