Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1998 Jan 1;101(1):51–61. doi: 10.1172/JCI1167

Myofibril degeneration caused by tropomodulin overexpression leads to dilated cardiomyopathy in juvenile mice.

M A Sussman 1, S Welch 1, N Cambon 1, R Klevitsky 1, T E Hewett 1, R Price 1, S A Witt 1, T R Kimball 1
PMCID: PMC508539  PMID: 9421465

Abstract

Loss of myofibril organization is a common feature of chronic dilated and progressive cardiomyopathy. To study how the heart compensates for myofibril degeneration, transgenic mice were created that undergo progressive loss of myofibrils after birth. Myofibril degeneration was induced by overexpression of tropomodulin, a component of the thin filament complex which determines and maintains sarcomeric actin filament length. The tropomodulin cDNA was placed under control of the alpha-myosin heavy chain gene promoter to overexpress tropomodulin specifically in the myocardium. Offspring with the most severe phenotype showed cardiomyopathic changes between 2 and 4 wk after birth. Hearts from these mice present characteristics consistent with dilated cardiomyopathy and a failed hypertrophic response. Histological analysis showed widespread loss of myofibril organization. Confocal microscopy of isolated cardiomyocytes revealed intense tropomodulin immunoreactivity in transgenic mice together with abnormal coincidence of tropomodulin and alpha-actinin reactivity at Z discs. Contractile function was compromised severely as determined by echocardiographic analyses and isolated Langendorff heart preparations. This novel experimentally induced cardiomyopathy will be useful for understanding dilated cardiomyopathy and the effect of thin filament-based myofibril degeneration upon cardiac structure and function.

Full Text

The Full Text of this article is available as a PDF (1.0 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arai M., Alpert N. R., MacLennan D. H., Barton P., Periasamy M. Alterations in sarcoplasmic reticulum gene expression in human heart failure. A possible mechanism for alterations in systolic and diastolic properties of the failing myocardium. Circ Res. 1993 Feb;72(2):463–469. doi: 10.1161/01.res.72.2.463. [DOI] [PubMed] [Google Scholar]
  2. Arber S., Hunter J. J., Ross J., Jr, Hongo M., Sansig G., Borg J., Perriard J. C., Chien K. R., Caroni P. MLP-deficient mice exhibit a disruption of cardiac cytoarchitectural organization, dilated cardiomyopathy, and heart failure. Cell. 1997 Feb 7;88(3):393–403. doi: 10.1016/s0092-8674(00)81878-4. [DOI] [PubMed] [Google Scholar]
  3. Beltrami C. A., Finato N., Rocco M., Feruglio G. A., Puricelli C., Cigola E., Sonnenblick E. H., Olivetti G., Anversa P. The cellular basis of dilated cardiomyopathy in humans. J Mol Cell Cardiol. 1995 Jan;27(1):291–305. doi: 10.1016/s0022-2828(08)80028-4. [DOI] [PubMed] [Google Scholar]
  4. Edwards J. G., Lyons G. E., Micales B. K., Malhotra A., Factor S., Leinwand L. A. Cardiomyopathy in transgenic myf5 mice. Circ Res. 1996 Mar;78(3):379–387. doi: 10.1161/01.res.78.3.379. [DOI] [PubMed] [Google Scholar]
  5. Fowler V. M., Sussmann M. A., Miller P. G., Flucher B. E., Daniels M. P. Tropomodulin is associated with the free (pointed) ends of the thin filaments in rat skeletal muscle. J Cell Biol. 1993 Jan;120(2):411–420. doi: 10.1083/jcb.120.2.411. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Fowler V. M. Tropomodulin: a cytoskeletal protein that binds to the end of erythrocyte tropomyosin and inhibits tropomyosin binding to actin. J Cell Biol. 1990 Aug;111(2):471–481. doi: 10.1083/jcb.111.2.471. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Gallo P., d'Amati G., Pelliccia F., Bernucci P., Cianfrocca C., Marino B. Functional significance of myocellular hypertrophy in dilated cardiomyopathy: histomorphometric analysis on 40 endomyocardial biopsies. Am J Cardiovasc Pathol. 1995;5(1):11–18. [PubMed] [Google Scholar]
  8. Geisterfer-Lowrance A. A., Christe M., Conner D. A., Ingwall J. S., Schoen F. J., Seidman C. E., Seidman J. G. A mouse model of familial hypertrophic cardiomyopathy. Science. 1996 May 3;272(5262):731–734. doi: 10.1126/science.272.5262.731. [DOI] [PubMed] [Google Scholar]
  9. Gregorio C. C., Fowler V. M. Mechanisms of thin filament assembly in embryonic chick cardiac myocytes: tropomodulin requires tropomyosin for assembly. J Cell Biol. 1995 May;129(3):683–695. doi: 10.1083/jcb.129.3.683. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Gulick J., Hewett T. E., Klevitsky R., Buck S. H., Moss R. L., Robbins J. Transgenic remodeling of the regulatory myosin light chains in the mammalian heart. Circ Res. 1997 May;80(5):655–664. doi: 10.1161/01.res.80.5.655. [DOI] [PubMed] [Google Scholar]
  11. Gulick J., Subramaniam A., Neumann J., Robbins J. Isolation and characterization of the mouse cardiac myosin heavy chain genes. J Biol Chem. 1991 May 15;266(14):9180–9185. [PubMed] [Google Scholar]
  12. Ho K. K., Pinsky J. L., Kannel W. B., Levy D. The epidemiology of heart failure: the Framingham Study. J Am Coll Cardiol. 1993 Oct;22(4 Suppl A):6A–13A. doi: 10.1016/0735-1097(93)90455-a. [DOI] [PubMed] [Google Scholar]
  13. Ito M., Swanson B., Sussman M. A., Kedes L., Lyons G. Cloning of tropomodulin cDNA and localization of gene transcripts during mouse embryogenesis. Dev Biol. 1995 Jan;167(1):317–328. doi: 10.1006/dbio.1995.1026. [DOI] [PubMed] [Google Scholar]
  14. Jindal N., Talwar K. K., Chopra P. Ultrastructural and histological study of endomyocardial biopsies from patients of dilated cardiomyopathy--a comparative evaluation and their clinical correlation. Indian Heart J. 1994 Nov-Dec;46(6):329–334. [PubMed] [Google Scholar]
  15. Jones W. K., Grupp I. L., Doetschman T., Grupp G., Osinska H., Hewett T. E., Boivin G., Gulick J., Ng W. A., Robbins J. Ablation of the murine alpha myosin heavy chain gene leads to dosage effects and functional deficits in the heart. J Clin Invest. 1996 Oct 15;98(8):1906–1917. doi: 10.1172/JCI118992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Jones W. K., Sánchez A., Robbins J. Murine pulmonary myocardium: developmental analysis of cardiac gene expression. Dev Dyn. 1994 Jun;200(2):117–128. doi: 10.1002/aja.1002000204. [DOI] [PubMed] [Google Scholar]
  17. Kleber F. X., Wensel R. Current guidelines for the treatment of congestive heart failure. Drugs. 1996 Jan;51(1):89–98. doi: 10.2165/00003495-199651010-00007. [DOI] [PubMed] [Google Scholar]
  18. Lipshultz S. E., Colan S. D., Gelber R. D., Perez-Atayde A. R., Sallan S. E., Sanders S. P. Late cardiac effects of doxorubicin therapy for acute lymphoblastic leukemia in childhood. N Engl J Med. 1991 Mar 21;324(12):808–815. doi: 10.1056/NEJM199103213241205. [DOI] [PubMed] [Google Scholar]
  19. Mann D. L., Urabe Y., Kent R. L., Vinciguerra S., Cooper G., 4th Cellular versus myocardial basis for the contractile dysfunction of hypertrophied myocardium. Circ Res. 1991 Feb;68(2):402–415. doi: 10.1161/01.res.68.2.402. [DOI] [PubMed] [Google Scholar]
  20. Manolio T. A., Baughman K. L., Rodeheffer R., Pearson T. A., Bristow J. D., Michels V. V., Abelmann W. H., Harlan W. R. Prevalence and etiology of idiopathic dilated cardiomyopathy (summary of a National Heart, Lung, and Blood Institute workshop. Am J Cardiol. 1992 Jun 1;69(17):1458–1466. doi: 10.1016/0002-9149(92)90901-a. [DOI] [PubMed] [Google Scholar]
  21. Marcus F. I., Fontaine G. H., Guiraudon G., Frank R., Laurenceau J. L., Malergue C., Grosgogeat Y. Right ventricular dysplasia: a report of 24 adult cases. Circulation. 1982 Feb;65(2):384–398. doi: 10.1161/01.cir.65.2.384. [DOI] [PubMed] [Google Scholar]
  22. Maron B. J., Ferrans V. J., Roberts W. C. Ultrastructural features of degenerated cardiac muscle cells in patients with cardiac hypertrophy. Am J Pathol. 1975 Jun;79(3):387–434. [PMC free article] [PubMed] [Google Scholar]
  23. Muthuchamy M., Grupp I. L., Grupp G., O'Toole B. A., Kier A. B., Boivin G. P., Neumann J., Wieczorek D. F. Molecular and physiological effects of overexpressing striated muscle beta-tropomyosin in the adult murine heart. J Biol Chem. 1995 Dec 22;270(51):30593–30603. doi: 10.1074/jbc.270.51.30593. [DOI] [PubMed] [Google Scholar]
  24. Palermo J., Gulick J., Colbert M., Fewell J., Robbins J. Transgenic remodeling of the contractile apparatus in the mammalian heart. Circ Res. 1996 Mar;78(3):504–509. doi: 10.1161/01.res.78.3.504. [DOI] [PubMed] [Google Scholar]
  25. Patterson J. H., Adams K. F., Jr Pathophysiology of heart failure: changing perceptions. Pharmacotherapy. 1996 Mar-Apr;16(2 Pt 2):27S–36S. [PubMed] [Google Scholar]
  26. Price R. L., Chintanowonges C., Shiraishi I., Borg T. K., Terracio L. Local and regional variations in myofibrillar patterns in looping rat hearts. Anat Rec. 1996 May;245(1):83–93. doi: 10.1002/(SICI)1097-0185(199605)245:1<83::AID-AR13>3.0.CO;2-5. [DOI] [PubMed] [Google Scholar]
  27. Rindt H., Subramaniam A., Robbins J. An in vivo analysis of transcriptional elements in the mouse alpha-myosin heavy chain gene promoter. Transgenic Res. 1995 Nov;4(6):397–405. doi: 10.1007/BF01973758. [DOI] [PubMed] [Google Scholar]
  28. Schaper J., Froede R., Hein S., Buck A., Hashizume H., Speiser B., Friedl A., Bleese N. Impairment of the myocardial ultrastructure and changes of the cytoskeleton in dilated cardiomyopathy. Circulation. 1991 Feb;83(2):504–514. doi: 10.1161/01.cir.83.2.504. [DOI] [PubMed] [Google Scholar]
  29. Sussman M. A., Battenberg E., Bloom F. E., Fowler V. M. Identification of two nerve growth factor-induced polypeptides in PC12 cells. J Mol Neurosci. 1990;2(3):163–174. doi: 10.1007/BF02896841. [DOI] [PubMed] [Google Scholar]
  30. Sussman M. A., Ito M., Daniels M. P., Flucher B., Buranen S., Kedes L. Chicken skeletal muscle tropomodulin: novel localization and characterization. Cell Tissue Res. 1996 Aug;285(2):287–296. doi: 10.1007/s004410050646. [DOI] [PubMed] [Google Scholar]
  31. Sussman M. A., Sakhi S., Barrientos P., Ito M., Kedes L. Tropomodulin in rat cardiac muscle. Localization of protein is independent of messenger RNA distribution during myofibrillar development. Circ Res. 1994 Aug;75(2):221–232. doi: 10.1161/01.res.75.2.221. [DOI] [PubMed] [Google Scholar]
  32. Tsika R. W., Bahl J. J., Leinwand L. A., Morkin E. Thyroid hormone regulates expression of a transfected human alpha-myosin heavy-chain fusion gene in fetal rat heart cells. Proc Natl Acad Sci U S A. 1990 Jan;87(1):379–383. doi: 10.1073/pnas.87.1.379. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Vikstrom K. L., Factor S. M., Leinwand L. A. Mice expressing mutant myosin heavy chains are a model for familial hypertrophic cardiomyopathy. Mol Med. 1996 Sep;2(5):556–567. [PMC free article] [PubMed] [Google Scholar]
  34. Weber A., Pennise C. R., Babcock G. G., Fowler V. M. Tropomodulin caps the pointed ends of actin filaments. J Cell Biol. 1994 Dec;127(6 Pt 1):1627–1635. doi: 10.1083/jcb.127.6.1627. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES