Abstract
Although glutamic acid decarboxylase (GAD) has been implicated in IDDM, there is no direct evidence showing GAD-reactive T cells are diabetogenic in vivo. To address this issue, 3-wk-old NOD mice received two injections of purified rat brain GAD; one mouse rapidly developed diabetes 3 wk later. Splenocytes from this mouse showed a proliferative response to purified GAD, and were used to generate a CD4+ T cell line, designated 5A, that expresses TCRs encoding Vbeta2 and Vbeta12. 5A T cells exhibit a MHC restricted proliferative response to purified GAD, as well as GAD65 peptide 524-543. After antigen-specific stimulation, 5A T cells secrete IFNgamma and TNFalpha/beta, but not IL-4. They are also cytotoxic against NOD-derived hybridoma cells (expressing I-Ag7) that were transfected with rat GAD65, but not nontransfected hybridoma cells. Adoptive transfer of 5A cells into NOD/SCID mice produced insulitis in all mice. Diabetes occurred in 83% of the mice. We conclude that GAD injection in young NOD mice may, in some cases, provoke diabetes due to the activation of diabetogenic T cells reactive to GAD65 peptides. Our data provide direct evidence that GAD65 autoimmunity may be a critical event in the pathogenesis of IDDM.
Full Text
The Full Text of this article is available as a PDF (347.0 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Baekkeskov S., Aanstoot H. J., Christgau S., Reetz A., Solimena M., Cascalho M., Folli F., Richter-Olesen H., De Camilli P., Camilli P. D. Identification of the 64K autoantigen in insulin-dependent diabetes as the GABA-synthesizing enzyme glutamic acid decarboxylase. Nature. 1990 Sep 13;347(6289):151–156. doi: 10.1038/347151a0. [DOI] [PubMed] [Google Scholar]
- Baekkeskov S., Nielsen J. H., Marner B., Bilde T., Ludvigsson J., Lernmark A. Autoantibodies in newly diagnosed diabetic children immunoprecipitate human pancreatic islet cell proteins. Nature. 1982 Jul 8;298(5870):167–169. doi: 10.1038/298167a0. [DOI] [PubMed] [Google Scholar]
- Bendelac A., Carnaud C., Boitard C., Bach J. F. Syngeneic transfer of autoimmune diabetes from diabetic NOD mice to healthy neonates. Requirement for both L3T4+ and Lyt-2+ T cells. J Exp Med. 1987 Oct 1;166(4):823–832. doi: 10.1084/jem.166.4.823. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Blanas E., Carbone F. R., Allison J., Miller J. F., Heath W. R. Induction of autoimmune diabetes by oral administration of autoantigen. Science. 1996 Dec 6;274(5293):1707–1709. doi: 10.1126/science.274.5293.1707. [DOI] [PubMed] [Google Scholar]
- Braut-Boucher F., Pichon J., Rat P., Adolphe M., Aubery M., Font J. A non-isotopic, highly sensitive, fluorimetric, cell-cell adhesion microplate assay using calcein AM-labeled lymphocytes. J Immunol Methods. 1995 Jan 13;178(1):41–51. doi: 10.1016/0022-1759(94)00239-s. [DOI] [PubMed] [Google Scholar]
- Butler M. H., Solimena M., Dirkx R., Jr, Hayday A., De Camilli P. Identification of a dominant epitope of glutamic acid decarboxylase (GAD-65) recognized by autoantibodies in stiff-man syndrome. J Exp Med. 1993 Dec 1;178(6):2097–2106. doi: 10.1084/jem.178.6.2097. [DOI] [PMC free article] [PubMed] [Google Scholar]
- De Camilli P., Cameron R., Greengard P. Synapsin I (protein I), a nerve terminal-specific phosphoprotein. I. Its general distribution in synapses of the central and peripheral nervous system demonstrated by immunofluorescence in frozen and plastic sections. J Cell Biol. 1983 May;96(5):1337–1354. doi: 10.1083/jcb.96.5.1337. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dirkx R., Jr, Thomas A., Li L., Lernmark A., Sherwin R. S., De Camilli P., Solimena M. Targeting of the 67-kDa isoform of glutamic acid decarboxylase to intracellular organelles is mediated by its interaction with the NH2-terminal region of the 65-kDa isoform of glutamic acid decarboxylase. J Biol Chem. 1995 Feb 3;270(5):2241–2246. doi: 10.1074/jbc.270.5.2241. [DOI] [PubMed] [Google Scholar]
- Elias D., Reshef T., Birk O. S., van der Zee R., Walker M. D., Cohen I. R. Vaccination against autoimmune mouse diabetes with a T-cell epitope of the human 65-kDa heat shock protein. Proc Natl Acad Sci U S A. 1991 Apr 15;88(8):3088–3091. doi: 10.1073/pnas.88.8.3088. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Harrison L. C., Honeyman M. C., DeAizpurua H. J., Schmidli R. S., Colman P. G., Tait B. D., Cram D. S. Inverse relation between humoral and cellular immunity to glutamic acid decarboxylase in subjects at risk of insulin-dependent diabetes. Lancet. 1993 May 29;341(8857):1365–1369. doi: 10.1016/0140-6736(93)90940-i. [DOI] [PubMed] [Google Scholar]
- Kaufman D. L., Clare-Salzler M., Tian J., Forsthuber T., Ting G. S., Robinson P., Atkinson M. A., Sercarz E. E., Tobin A. J., Lehmann P. V. Spontaneous loss of T-cell tolerance to glutamic acid decarboxylase in murine insulin-dependent diabetes. Nature. 1993 Nov 4;366(6450):69–72. doi: 10.1038/366069a0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kurrer M. O., Pakala S. V., Hanson H. L., Katz J. D. Beta cell apoptosis in T cell-mediated autoimmune diabetes. Proc Natl Acad Sci U S A. 1997 Jan 7;94(1):213–218. doi: 10.1073/pnas.94.1.213. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lichtenfels R., Biddison W. E., Schulz H., Vogt A. B., Martin R. CARE-LASS (calcein-release-assay), an improved fluorescence-based test system to measure cytotoxic T lymphocyte activity. J Immunol Methods. 1994 Jun 24;172(2):227–239. doi: 10.1016/0022-1759(94)90110-4. [DOI] [PubMed] [Google Scholar]
- Matsuba H., Jitsukawa T., Yamagata N., Uchida S., Watanabe H. Establishment of rat glutamic acid decarboxylase (GAD)-reactive T-cell clones from NOD mice. Immunol Lett. 1994 Sep;42(1-2):101–103. doi: 10.1016/0165-2478(94)90043-4. [DOI] [PubMed] [Google Scholar]
- McInerney M. F., Rath S., Janeway C. A., Jr Exclusive expression of MHC class II proteins on CD45+ cells in pancreatic islets of NOD mice. Diabetes. 1991 May;40(5):648–651. doi: 10.2337/diab.40.5.648. [DOI] [PubMed] [Google Scholar]
- Miller B. J., Appel M. C., O'Neil J. J., Wicker L. S. Both the Lyt-2+ and L3T4+ T cell subsets are required for the transfer of diabetes in nonobese diabetic mice. J Immunol. 1988 Jan 1;140(1):52–58. [PubMed] [Google Scholar]
- Peterson J. D., Haskins K. Transfer of diabetes in the NOD-scid mouse by CD4 T-cell clones. Differential requirement for CD8 T-cells. Diabetes. 1996 Mar;45(3):328–336. doi: 10.2337/diab.45.3.328. [DOI] [PubMed] [Google Scholar]
- Reich E. P., Sherwin R. S., Kanagawa O., Janeway C. A., Jr An explanation for the protective effect of the MHC class II I-E molecule in murine diabetes. Nature. 1989 Sep 28;341(6240):326–328. doi: 10.1038/341326a0. [DOI] [PubMed] [Google Scholar]
- Reiner S. L., Zheng S., Corry D. B., Locksley R. M. Constructing polycompetitor cDNAs for quantitative PCR (J. Immunol. Methods 165 (1993) 37-46; 173(1994) 133). J Immunol Methods. 1994 Oct 14;175(2):275–275. doi: 10.1016/0022-1759(94)90370-0. [DOI] [PubMed] [Google Scholar]
- Rohane P. W., Shimada A., Kim D. T., Edwards C. T., Charlton B., Shultz L. D., Fathman C. G. Islet-infiltrating lymphocytes from prediabetic NOD mice rapidly transfer diabetes to NOD-scid/scid mice. Diabetes. 1995 May;44(5):550–554. doi: 10.2337/diab.44.5.550. [DOI] [PubMed] [Google Scholar]
- Schloot N. C., Daniel D., Norbury-Glaser M., Wegmann D. R. Peripheral T cell clones from NOD mice specific for GAD65 peptides: lack of islet responsiveness or diabetogenicity. J Autoimmun. 1996 Jun;9(3):357–363. doi: 10.1006/jaut.1996.0048. [DOI] [PubMed] [Google Scholar]
- Signore A., Pozzilli P., Gale E. A., Andreani D., Beverley P. C. The natural history of lymphocyte subsets infiltrating the pancreas of NOD mice. Diabetologia. 1989 May;32(5):282–289. doi: 10.1007/BF00265543. [DOI] [PubMed] [Google Scholar]
- Solimena M., Aggujaro D., Muntzel C., Dirkx R., Butler M., De Camilli P., Hayday A. Association of GAD-65, but not of GAD-67, with the Golgi complex of transfected Chinese hamster ovary cells mediated by the N-terminal region. Proc Natl Acad Sci U S A. 1993 Apr 1;90(7):3073–3077. doi: 10.1073/pnas.90.7.3073. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Solimena M., Dirkx R., Jr, Hermel J. M., Pleasic-Williams S., Shapiro J. A., Caron L., Rabin D. U. ICA 512, an autoantigen of type I diabetes, is an intrinsic membrane protein of neurosecretory granules. EMBO J. 1996 May 1;15(9):2102–2114. [PMC free article] [PubMed] [Google Scholar]
- Tian J., Atkinson M. A., Clare-Salzler M., Herschenfeld A., Forsthuber T., Lehmann P. V., Kaufman D. L. Nasal administration of glutamate decarboxylase (GAD65) peptides induces Th2 responses and prevents murine insulin-dependent diabetes. J Exp Med. 1996 Apr 1;183(4):1561–1567. doi: 10.1084/jem.183.4.1561. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tian J., Clare-Salzler M., Herschenfeld A., Middleton B., Newman D., Mueller R., Arita S., Evans C., Atkinson M. A., Mullen Y. Modulating autoimmune responses to GAD inhibits disease progression and prolongs islet graft survival in diabetes-prone mice. Nat Med. 1996 Dec;2(12):1348–1353. doi: 10.1038/nm1296-1348. [DOI] [PubMed] [Google Scholar]
- Tisch R., Yang X. D., Singer S. M., Liblau R. S., Fugger L., McDevitt H. O. Immune response to glutamic acid decarboxylase correlates with insulitis in non-obese diabetic mice. Nature. 1993 Nov 4;366(6450):72–75. doi: 10.1038/366072a0. [DOI] [PubMed] [Google Scholar]
- Wang X. M., Terasaki P. I., Rankin G. W., Jr, Chia D., Zhong H. P., Hardy S. A new microcellular cytotoxicity test based on calcein AM release. Hum Immunol. 1993 Aug;37(4):264–270. doi: 10.1016/0198-8859(93)90510-8. [DOI] [PubMed] [Google Scholar]
- Wong F. S., Visintin I., Wen L., Flavell R. A., Janeway C. A., Jr CD8 T cell clones from young nonobese diabetic (NOD) islets can transfer rapid onset of diabetes in NOD mice in the absence of CD4 cells. J Exp Med. 1996 Jan 1;183(1):67–76. doi: 10.1084/jem.183.1.67. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yamada K., Takane-Gyotoku N., Yuan X., Ichikawa F., Inada C., Nonaka K. Mouse islet cell lysis mediated by interleukin-1-induced Fas. Diabetologia. 1996 Nov;39(11):1306–1312. doi: 10.1007/s001250050574. [DOI] [PubMed] [Google Scholar]