Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1998 Jan 1;101(1):79–85. doi: 10.1172/JCI1146

Substrate availability limits human skeletal muscle oxidative ATP regeneration at the onset of ischemic exercise.

J A Timmons 1, T Gustafsson 1, C J Sundberg 1, E Jansson 1, E Hultman 1, L Kaijser 1, J Chwalbinska-Moneta 1, D Constantin-Teodosiu 1, I A Macdonald 1, P L Greenhaff 1
PMCID: PMC508543  PMID: 9421469

Abstract

We have demonstrated previously that dichloroacetate can attenuate skeletal muscle fatigue by up to 35% in a canine model of peripheral ischemia (Timmons, J.A., S.M. Poucher, D. Constantin-Teodosiu, V. Worrall, I.A. Macdonald, and P.L. Greenhaff. 1996. J. Clin. Invest. 97:879-883). This was thought to be a consequence of dichloroacetate increasing acetyl group availability early during contraction. In this study we characterized the metabolic effects of dichloroacetate in a human model of peripheral muscle ischemia. On two separate occasions (control-saline or dichloroacetate infusion), nine subjects performed 8 min of single-leg knee extension exercise at an intensity aimed at achieving volitional exhaustion in approximately 8 min. During exercise each subject's lower limbs were exposed to 50 mmHg of positive pressure, which reduces blood flow by approximately 20%. Dichloroacetate increased resting muscle pyruvate dehydrogenase complex activation status by threefold and elevated acetylcarnitine concentration by fivefold. After 3 min of exercise, phosphocreatine degradation and lactate accumulation were both reduced by approximately 50% after dichloroacetate pretreatment, when compared with control conditions. However, after 8 min of exercise no differences existed between treatments. Therefore, it would appear that dichloroacetate can delay the accumulation of metabolites which lead to the development of skeletal muscle fatigue during ischemia but does not alter the metabolic profile when a maximal effort is approached.

Full Text

The Full Text of this article is available as a PDF (175.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bergstrom J. Percutaneous needle biopsy of skeletal muscle in physiological and clinical research. Scand J Clin Lab Invest. 1975 Nov;35(7):609–616. [PubMed] [Google Scholar]
  2. Bruton J. D., Westerblad H., Katz A., Lännergren J. Augmented force output in skeletal muscle fibres of Xenopus following a preceding bout of activity. J Physiol. 1996 May 15;493(Pt 1):211–217. doi: 10.1113/jphysiol.1996.sp021376. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Carraro F., Klein S., Rosenblatt J. I., Wolfe R. R. Effect of dichloroacetate on lactate concentration in exercising humans. J Appl Physiol (1985) 1989 Feb;66(2):591–597. doi: 10.1152/jappl.1989.66.2.591. [DOI] [PubMed] [Google Scholar]
  4. Cederblad G., Carlin J. I., Constantin-Teodosiu D., Harper P., Hultman E. Radioisotopic assays of CoASH and carnitine and their acetylated forms in human skeletal muscle. Anal Biochem. 1990 Mar;185(2):274–278. doi: 10.1016/0003-2697(90)90292-h. [DOI] [PubMed] [Google Scholar]
  5. Childress C. C., Sacktor B., Traynor D. R. Function of carnitine in the fatty acid oxidase-deficient insect flight muscle. J Biol Chem. 1967 Feb 25;242(4):754–760. [PubMed] [Google Scholar]
  6. Constantin-Teodosiu D., Cederblad G., Hultman E. A sensitive radioisotopic assay of pyruvate dehydrogenase complex in human muscle tissue. Anal Biochem. 1991 Nov 1;198(2):347–351. doi: 10.1016/0003-2697(91)90437-x. [DOI] [PubMed] [Google Scholar]
  7. Eiken O., Bjurstedt H. Dynamic exercise in man as influenced by experimental restriction of blood flow in the working muscles. Acta Physiol Scand. 1987 Nov;131(3):339–345. doi: 10.1111/j.1748-1716.1987.tb08248.x. [DOI] [PubMed] [Google Scholar]
  8. Engelen M., Porszasz J., Riley M., Wasserman K., Maehara K., Barstow T. J. Effects of hypoxic hypoxia on O2 uptake and heart rate kinetics during heavy exercise. J Appl Physiol (1985) 1996 Dec;81(6):2500–2508. doi: 10.1152/jappl.1996.81.6.2500. [DOI] [PubMed] [Google Scholar]
  9. Grassi B., Poole D. C., Richardson R. S., Knight D. R., Erickson B. K., Wagner P. D. Muscle O2 uptake kinetics in humans: implications for metabolic control. J Appl Physiol (1985) 1996 Mar;80(3):988–998. doi: 10.1152/jappl.1996.80.3.988. [DOI] [PubMed] [Google Scholar]
  10. Greenhaff P. L., Nevill M. E., Soderlund K., Bodin K., Boobis L. H., Williams C., Hultman E. The metabolic responses of human type I and II muscle fibres during maximal treadmill sprinting. J Physiol. 1994 Jul 1;478(Pt 1):149–155. doi: 10.1113/jphysiol.1994.sp020238. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. HENNEMAN E. Relation between size of neurons and their susceptibility to discharge. Science. 1957 Dec 27;126(3287):1345–1347. doi: 10.1126/science.126.3287.1345. [DOI] [PubMed] [Google Scholar]
  12. Harris R. C., Foster C. V., Hultman E. Acetylcarnitine formation during intense muscular contraction in humans. J Appl Physiol (1985) 1987 Jul;63(1):440–442. doi: 10.1152/jappl.1987.63.1.440. [DOI] [PubMed] [Google Scholar]
  13. Harris R. C., Hultman E., Nordesjö L. O. Glycogen, glycolytic intermediates and high-energy phosphates determined in biopsy samples of musculus quadriceps femoris of man at rest. Methods and variance of values. Scand J Clin Lab Invest. 1974 Apr;33(2):109–120. [PubMed] [Google Scholar]
  14. Holm J., Björntorp P., Scherstén T. Metabolic activity in human skeletal muscle. Effect of peripheral arterial insufficiency. Eur J Clin Invest. 1972 Aug;2(5):321–325. doi: 10.1111/j.1365-2362.1972.tb00657.x. [DOI] [PubMed] [Google Scholar]
  15. Katz A., Sahlin K. Effect of decreased oxygen availability on NADH and lactate contents in human skeletal muscle during exercise. Acta Physiol Scand. 1987 Sep;131(1):119–127. doi: 10.1111/j.1748-1716.1987.tb08213.x. [DOI] [PubMed] [Google Scholar]
  16. Laurent D., Authier B., Lebas J. F., Rossi A. Effect of prior exercise in Pi/PC ratio and intracellular pH during a standardized exercise. A study on human muscle using [31P]NMR. Acta Physiol Scand. 1992 Jan;144(1):31–38. doi: 10.1111/j.1748-1716.1992.tb09264.x. [DOI] [PubMed] [Google Scholar]
  17. Linnarsson D., Karlsson J., Fagraeus L., Saltin B. Muscle metabolites and oxygen deficit with exercise in hypoxia and hyperoxia. J Appl Physiol. 1974 Apr;36(4):399–402. doi: 10.1152/jappl.1974.36.4.399. [DOI] [PubMed] [Google Scholar]
  18. Ludvik B., Mayer G., Stifter S., Putz D., Barnas U., Graf H. Effects of dichloroacetate on exercise performance in healthy volunteers. Pflugers Arch. 1993 May;423(3-4):251–254. doi: 10.1007/BF00374403. [DOI] [PubMed] [Google Scholar]
  19. Ludvik B., Peer G., Berzlanovich A., Stifter S., Graf H. Effects of dichloroacetate and bicarbonate on haemodynamic parameters in healthy volunteers. Clin Sci (Lond) 1991 Jan;80(1):47–51. doi: 10.1042/cs0800047. [DOI] [PubMed] [Google Scholar]
  20. McCreary C. R., Chilibeck P. D., Marsh G. D., Paterson D. H., Cunningham D. A., Thompson R. T. Kinetics of pulmonary oxygen uptake and muscle phosphates during moderate-intensity calf exercise. J Appl Physiol (1985) 1996 Sep;81(3):1331–1338. doi: 10.1152/jappl.1996.81.3.1331. [DOI] [PubMed] [Google Scholar]
  21. Meyer R. A. A linear model of muscle respiration explains monoexponential phosphocreatine changes. Am J Physiol. 1988 Apr;254(4 Pt 1):C548–C553. doi: 10.1152/ajpcell.1988.254.4.C548. [DOI] [PubMed] [Google Scholar]
  22. Moreno-Sánchez R., Hogue B. A., Hansford R. G. Influence of NAD-linked dehydrogenase activity on flux through oxidative phosphorylation. Biochem J. 1990 Jun 1;268(2):421–428. doi: 10.1042/bj2680421. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Moritani T., Sherman W. M., Shibata M., Matsumoto T., Shinohara M. Oxygen availability and motor unit activity in humans. Eur J Appl Physiol Occup Physiol. 1992;64(6):552–556. doi: 10.1007/BF00843767. [DOI] [PubMed] [Google Scholar]
  24. Murphy P. C., Cuervo L. A., Hughson R. L. A study of cardiorespiratory dynamics with step and ramp exercise tests in normoxia and hypoxia. Cardiovasc Res. 1989 Oct;23(10):825–832. doi: 10.1093/cvr/23.10.825. [DOI] [PubMed] [Google Scholar]
  25. Regensteiner J. G., Hiatt W. R. Exercise rehabilitation for patients with peripheral arterial disease. Exerc Sport Sci Rev. 1995;23:1–24. [PubMed] [Google Scholar]
  26. Roman B. B., Foley J. M., Meyer R. A., Koretsky A. P. Contractile and metabolic effects of increased creatine kinase activity in mouse skeletal muscle. Am J Physiol. 1996 Apr;270(4 Pt 1):C1236–C1245. doi: 10.1152/ajpcell.1996.270.4.C1236. [DOI] [PubMed] [Google Scholar]
  27. Sahlin K. Muscle carnitine metabolism during incremental dynamic exercise in humans. Acta Physiol Scand. 1990 Mar;138(3):259–262. doi: 10.1111/j.1748-1716.1990.tb08845.x. [DOI] [PubMed] [Google Scholar]
  28. Sahlin K., Ren J. M., Broberg S. Oxygen deficit at the onset of submaximal exercise is not due to a delayed oxygen transport. Acta Physiol Scand. 1988 Oct;134(2):175–180. doi: 10.1111/j.1748-1716.1988.tb08477.x. [DOI] [PubMed] [Google Scholar]
  29. Stacpoole P. W. The pharmacology of dichloroacetate. Metabolism. 1989 Nov;38(11):1124–1144. doi: 10.1016/0026-0495(89)90051-6. [DOI] [PubMed] [Google Scholar]
  30. Sundberg C. J. Exercise and training during graded leg ischaemia in healthy man with special reference to effects on skeletal muscle. Acta Physiol Scand Suppl. 1994;615:1–50. [PubMed] [Google Scholar]
  31. Sundberg C. J., Kaijser L. Effects of graded restriction of perfusion on circulation and metabolism in the working leg; quantification of a human ischaemia-model. Acta Physiol Scand. 1992 Sep;146(1):1–9. doi: 10.1111/j.1748-1716.1992.tb09386.x. [DOI] [PubMed] [Google Scholar]
  32. Timmons J. A., Poucher S. M., Constantin-Teodosiu D., Macdonald I. A., Greenhaff P. L. Metabolic responses from rest to steady state determine contractile function in ischemic skeletal muscle. Am J Physiol. 1997 Aug;273(2 Pt 1):E233–E238. doi: 10.1152/ajpendo.1997.273.2.E233. [DOI] [PubMed] [Google Scholar]
  33. Timmons J. A., Poucher S. M., Constantin-Teodosiu D., Worrall V., MacDonald I. A., Greenhaff P. L. Metabolic responses of canine gracilis muscle during contraction with partial ischemia. Am J Physiol. 1996 Mar;270(3 Pt 1):E400–E406. doi: 10.1152/ajpendo.1996.270.3.E400. [DOI] [PubMed] [Google Scholar]
  34. Timmons J. A., Poucher S. M., Constantin-Teodosiu D., Worrall V., Macdonald I. A., Greenhaff P. L. Increased acetyl group availability enhances contractile function of canine skeletal muscle during ischemia. J Clin Invest. 1996 Feb 1;97(3):879–883. doi: 10.1172/JCI118490. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Wells P. G., Moore G. W., Rabin D., Wilkinson G. R., Oates J. A., Stacpoole P. W. Metabolic effects and pharmacokinetics of intravenously administered dichloroacetate in humans. Diabetologia. 1980 Aug;19(2):109–113. doi: 10.1007/BF00421855. [DOI] [PubMed] [Google Scholar]
  36. Williamson J. W., Raven P. B., Whipp B. J. Unaltered oxygen uptake kinetics at exercise onset with lower-body positive pressure in humans. Exp Physiol. 1996 Jul;81(4):695–705. doi: 10.1113/expphysiol.1996.sp003970. [DOI] [PubMed] [Google Scholar]
  37. Wilson J. R., Martin J. L., Schwartz D., Ferraro N. Exercise intolerance in patients with chronic heart failure: role of impaired nutritive flow to skeletal muscle. Circulation. 1984 Jun;69(6):1079–1087. doi: 10.1161/01.cir.69.6.1079. [DOI] [PubMed] [Google Scholar]
  38. Yoshida T., Kamiya J., Hishimoto K. Are oxygen uptake kinetics at the onset of exercise speeded up by local metabolic status in active muscles? Eur J Appl Physiol Occup Physiol. 1995;70(6):482–486. doi: 10.1007/BF00634376. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES