Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1998 Jan 1;101(1):97–108. doi: 10.1172/JCI1604

Proinflammatory stimuli regulate endothelial hyaluronan expression and CD44/HA-dependent primary adhesion.

M Mohamadzadeh 1, H DeGrendele 1, H Arizpe 1, P Estess 1, M Siegelman 1
PMCID: PMC508545  PMID: 9421471

Abstract

The localization of circulating leukocytes within inflamed tissues occurs as the result of interactions with and migration across vascular endothelium, and is governed, in part, by the expression of adhesion molecules on both cell types. Recently, we have described a novel primary adhesion interaction between the structurally activated form of the adhesion molecule CD44 on lymphocytes and its major ligand hyaluronan on endothelial cells under physiologic laminar flow conditions, and have proposed that this interaction functions in an extravasation pathway for lymphocytes in vascular beds at sites of inflammation. While the regulation of activated CD44 on leukocytes has been characterized in depth, regulation of hyaluronate (HA) on endothelial cells has not been extensively studied. Here we demonstrate that the expression of HA on cultured endothelial cell lines and primary endothelial cultures is inducible by the proinflammatory cytokines TNFalpha and IL-1beta, as well as bacterial lipopolysaccharide. In addition, this inducibility appears strikingly restricted to endothelial cells derived from microvascular, but not large vessel, sources. The elevated HA levels thus induced result in increased CD44-dependent adhesive interactions in both nonstatic shear and laminar flow adhesion assays. Changes in mRNA levels for the described HA synthetic and degradative enzymes were not found, suggesting other more complex mechanisms of regulation. Together, these data add to the selectin and immunoglobulin gene families a new inducible endothelial adhesive molecule, hyaluronan, and help to further our understanding of the potential physiologic roles of the CD44/HA interaction; i.e., local cytokine production within inflamed vascular beds may enhance surface hyaluronan expression on endothelial cells, thereby creating local sites receptive to the CD44/HA interaction and thus extravasation of inflammatory cells.

Full Text

The Full Text of this article is available as a PDF (361.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abbassi O., Kishimoto T. K., McIntire L. V., Anderson D. C., Smith C. W. E-selectin supports neutrophil rolling in vitro under conditions of flow. J Clin Invest. 1993 Dec;92(6):2719–2730. doi: 10.1172/JCI116889. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Abbassi O., Lane C. L., Krater S., Kishimoto T. K., Anderson D. C., McIntire L. V., Smith C. W. Canine neutrophil margination mediated by lectin adhesion molecule-1 in vitro. J Immunol. 1991 Oct 1;147(7):2107–2115. [PubMed] [Google Scholar]
  3. Abbot S. E., Kaul A., Stevens C. R., Blake D. R. Isolation and culture of synovial microvascular endothelial cells. Characterization and assessment of adhesion molecule expression. Arthritis Rheum. 1992 Apr;35(4):401–406. doi: 10.1002/art.1780350407. [DOI] [PubMed] [Google Scholar]
  4. Ager A. Isolation and culture of high endothelial cells from rat lymph nodes. J Cell Sci. 1987 Feb;87(Pt 1):133–144. doi: 10.1242/jcs.87.1.133. [DOI] [PubMed] [Google Scholar]
  5. Alon R., Kassner P. D., Carr M. W., Finger E. B., Hemler M. E., Springer T. A. The integrin VLA-4 supports tethering and rolling in flow on VCAM-1. J Cell Biol. 1995 Mar;128(6):1243–1253. doi: 10.1083/jcb.128.6.1243. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Alon R., Rossiter H., Wang X., Springer T. A., Kupper T. S. Distinct cell surface ligands mediate T lymphocyte attachment and rolling on P and E selectin under physiological flow. J Cell Biol. 1994 Dec;127(5):1485–1495. doi: 10.1083/jcb.127.5.1485. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Aruffo A., Stamenkovic I., Melnick M., Underhill C. B., Seed B. CD44 is the principal cell surface receptor for hyaluronate. Cell. 1990 Jun 29;61(7):1303–1313. doi: 10.1016/0092-8674(90)90694-a. [DOI] [PubMed] [Google Scholar]
  8. Ausprunk D. H. Distribution of hyaluronic acid and sulfated glycosaminoglycans during blood-vessel development in the chick chorioallantoic membrane. Am J Anat. 1986 Nov;177(3):313–331. doi: 10.1002/aja.1001770304. [DOI] [PubMed] [Google Scholar]
  9. Bartolazzi A., Peach R., Aruffo A., Stamenkovic I. Interaction between CD44 and hyaluronate is directly implicated in the regulation of tumor development. J Exp Med. 1994 Jul 1;180(1):53–66. doi: 10.1084/jem.180.1.53. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Bevilacqua M. P. Endothelial-leukocyte adhesion molecules. Annu Rev Immunol. 1993;11:767–804. doi: 10.1146/annurev.iy.11.040193.004003. [DOI] [PubMed] [Google Scholar]
  11. Bevilacqua M. P., Stengelin S., Gimbrone M. A., Jr, Seed B. Endothelial leukocyte adhesion molecule 1: an inducible receptor for neutrophils related to complement regulatory proteins and lectins. Science. 1989 Mar 3;243(4895):1160–1165. doi: 10.1126/science.2466335. [DOI] [PubMed] [Google Scholar]
  12. Bourguignon L. Y., Lokeshwar V. B., Chen X., Kerrick W. G. Hyaluronic acid-induced lymphocyte signal transduction and HA receptor (GP85/CD44)-cytoskeleton interaction. J Immunol. 1993 Dec 15;151(12):6634–6644. [PubMed] [Google Scholar]
  13. Brown T. J., Laurent U. B., Fraser J. R. Turnover of hyaluronan in synovial joints: elimination of labelled hyaluronan from the knee joint of the rabbit. Exp Physiol. 1991 Jan;76(1):125–134. doi: 10.1113/expphysiol.1991.sp003474. [DOI] [PubMed] [Google Scholar]
  14. Butcher E. C. Leukocyte-endothelial cell recognition: three (or more) steps to specificity and diversity. Cell. 1991 Dec 20;67(6):1033–1036. doi: 10.1016/0092-8674(91)90279-8. [DOI] [PubMed] [Google Scholar]
  15. Butcher E. C., Picker L. J. Lymphocyte homing and homeostasis. Science. 1996 Apr 5;272(5258):60–66. doi: 10.1126/science.272.5258.60. [DOI] [PubMed] [Google Scholar]
  16. Camp R. L., Scheynius A., Johansson C., Puré E. CD44 is necessary for optimal contact allergic responses but is not required for normal leukocyte extravasation. J Exp Med. 1993 Aug 1;178(2):497–507. doi: 10.1084/jem.178.2.497. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Campbell R. D., Love S. H., Whiteheart S. W., Young B., Myrvik Q. N. Increased hyaluronic acid is associated with dermal delayed-type hypersensitivity. Inflammation. 1982 Sep;6(3):235–244. doi: 10.1007/BF00916405. [DOI] [PubMed] [Google Scholar]
  18. Carley W. W., Szczepanski A., Gerritsen M. E. Cytokeratin expression and hyaluronic acid production in cultures of human synovial microvascular endothelial cells: influence of cytokines and growth factors. Microcirculation. 1996 Dec;3(4):359–370. doi: 10.3109/10739689609148308. [DOI] [PubMed] [Google Scholar]
  19. Carlos T. M., Harlan J. M. Leukocyte-endothelial adhesion molecules. Blood. 1994 Oct 1;84(7):2068–2101. [PubMed] [Google Scholar]
  20. Clark R. A., Alon R., Springer T. A. CD44 and hyaluronan-dependent rolling interactions of lymphocytes on tonsillar stroma. J Cell Biol. 1996 Aug;134(4):1075–1087. doi: 10.1083/jcb.134.4.1075. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. DeGrendele H. C., Estess P., Picker L. J., Siegelman M. H. CD44 and its ligand hyaluronate mediate rolling under physiologic flow: a novel lymphocyte-endothelial cell primary adhesion pathway. J Exp Med. 1996 Mar 1;183(3):1119–1130. doi: 10.1084/jem.183.3.1119. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. DeGrendele H. C., Estess P., Siegelman M. H. Requirement for CD44 in activated T cell extravasation into an inflammatory site. Science. 1997 Oct 24;278(5338):672–675. doi: 10.1126/science.278.5338.672. [DOI] [PubMed] [Google Scholar]
  23. DeGrendele H. C., Kosfiszer M., Estess P., Siegelman M. H. CD44 activation and associated primary adhesion is inducible via T cell receptor stimulation. J Immunol. 1997 Sep 15;159(6):2549–2553. [PubMed] [Google Scholar]
  24. Engström-Laurent A. Changes in hyaluronan concentration in tissues and body fluids in disease states. Ciba Found Symp. 1989;143:233-40; discussion 240-7, 281-5. doi: 10.1002/9780470513774.ch14. [DOI] [PubMed] [Google Scholar]
  25. Engström-Laurent A., Feltelius N., Hällgren R., Wasteson A. Raised serum hyaluronate levels in scleroderma: an effect of growth factor induced activation of connective tissue cells? Ann Rheum Dis. 1985 Sep;44(9):614–620. doi: 10.1136/ard.44.9.614. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Engström-Laurent A., Hällgren R. Circulating hyaluronic acid levels vary with physical activity in healthy subjects and in rheumatoid arthritis patients. Relationship to synovitis mass and morning stiffness. Arthritis Rheum. 1987 Dec;30(12):1333–1338. doi: 10.1002/art.1780301203. [DOI] [PubMed] [Google Scholar]
  27. Fraser J. R., Kimpton W. G., Pierscionek B. K., Cahill R. N. The kinetics of hyaluronan in normal and acutely inflamed synovial joints: observations with experimental arthritis in sheep. Semin Arthritis Rheum. 1993 Jun;22(6 Suppl 1):9–17. doi: 10.1016/s0049-0172(10)80015-0. [DOI] [PubMed] [Google Scholar]
  28. Gerritsen M. E., Kelley K. A., Ligon G., Perry C. A., Shen C. P., Szczepanski A., Carley W. W. Regulation of the expression of intercellular adhesion molecule 1 in cultured human endothelial cells derived from rheumatoid synovium. Arthritis Rheum. 1993 May;36(5):593–602. doi: 10.1002/art.1780360504. [DOI] [PubMed] [Google Scholar]
  29. Green S. J., Tarone G., Underhill C. B. Distribution of hyaluronate and hyaluronate receptors in the adult lung. J Cell Sci. 1988 May;90(Pt 1):145–156. doi: 10.1242/jcs.90.1.145. [DOI] [PubMed] [Google Scholar]
  30. Hall C. L., Wang C., Lange L. A., Turley E. A. Hyaluronan and the hyaluronan receptor RHAMM promote focal adhesion turnover and transient tyrosine kinase activity. J Cell Biol. 1994 Jul;126(2):575–588. doi: 10.1083/jcb.126.2.575. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Haraldsen G., Kvale D., Lien B., Farstad I. N., Brandtzaeg P. Cytokine-regulated expression of E-selectin, intercellular adhesion molecule-1 (ICAM-1), and vascular cell adhesion molecule-1 (VCAM-1) in human microvascular endothelial cells. J Immunol. 1996 Apr 1;156(7):2558–2565. [PubMed] [Google Scholar]
  32. Harder R., Uhlig H., Kashan A., Schütt B., Duijvestijn A., Butcher E. C., Thiele H. G., Hamann A. Dissection of murine lymphocyte-endothelial cell interaction mechanisms by SV-40-transformed mouse endothelial cell lines: novel mechanisms mediating basal binding, and alpha 4-integrin-dependent cytokine-induced adhesion. Exp Cell Res. 1991 Dec;197(2):259–267. doi: 10.1016/0014-4827(91)90431-s. [DOI] [PubMed] [Google Scholar]
  33. Haynes B. F., Hale L. P., Patton K. L., Martin M. E., McCallum R. M. Measurement of an adhesion molecule as an indicator of inflammatory disease activity. Up-regulation of the receptor for hyaluronate (CD44) in rheumatoid arthritis. Arthritis Rheum. 1991 Nov;34(11):1434–1443. doi: 10.1002/art.1780341115. [DOI] [PubMed] [Google Scholar]
  34. Horibata K., Harris A. W. Mouse myelomas and lymphomas in culture. Exp Cell Res. 1970 Apr;60(1):61–77. doi: 10.1016/0014-4827(70)90489-1. [DOI] [PubMed] [Google Scholar]
  35. Jones D. A., Abbassi O., McIntire L. V., McEver R. P., Smith C. W. P-selectin mediates neutrophil rolling on histamine-stimulated endothelial cells. Biophys J. 1993 Oct;65(4):1560–1569. doi: 10.1016/S0006-3495(93)81195-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Jones D. A., McIntire L. V., Smith C. W., Picker L. J. A two-step adhesion cascade for T cell/endothelial cell interactions under flow conditions. J Clin Invest. 1994 Dec;94(6):2443–2450. doi: 10.1172/JCI117612. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Kansas G. S. Selectins and their ligands: current concepts and controversies. Blood. 1996 Nov 1;88(9):3259–3287. [PubMed] [Google Scholar]
  38. Katoh S., Zheng Z., Oritani K., Shimozato T., Kincade P. W. Glycosylation of CD44 negatively regulates its recognition of hyaluronan. J Exp Med. 1995 Aug 1;182(2):419–429. doi: 10.1084/jem.182.2.419. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. King S. R., Hickerson W. L., Proctor K. G. Beneficial actions of exogenous hyaluronic acid on wound healing. Surgery. 1991 Jan;109(1):76–84. [PubMed] [Google Scholar]
  40. Laurent T. C., Fraser J. R. The properties and turnover of hyaluronan. Ciba Found Symp. 1986;124:9–29. doi: 10.1002/9780470513385.ch2. [DOI] [PubMed] [Google Scholar]
  41. Lawrence M. B., Springer T. A. Leukocytes roll on a selectin at physiologic flow rates: distinction from and prerequisite for adhesion through integrins. Cell. 1991 May 31;65(5):859–873. doi: 10.1016/0092-8674(91)90393-d. [DOI] [PubMed] [Google Scholar]
  42. Lawrence M. B., Springer T. A. Neutrophils roll on E-selectin. J Immunol. 1993 Dec 1;151(11):6338–6346. [PubMed] [Google Scholar]
  43. Lesley J., English N., Perschl A., Gregoroff J., Hyman R. Variant cell lines selected for alterations in the function of the hyaluronan receptor CD44 show differences in glycosylation. J Exp Med. 1995 Aug 1;182(2):431–437. doi: 10.1084/jem.182.2.431. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Lesley J., He Q., Miyake K., Hamann A., Hyman R., Kincade P. W. Requirements for hyaluronic acid binding by CD44: a role for the cytoplasmic domain and activation by antibody. J Exp Med. 1992 Jan 1;175(1):257–266. doi: 10.1084/jem.175.1.257. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Lesley J., Howes N., Perschl A., Hyman R. Hyaluronan binding function of CD44 is transiently activated on T cells during an in vivo immune response. J Exp Med. 1994 Jul 1;180(1):383–387. doi: 10.1084/jem.180.1.383. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Lesley J., Hyman R., Kincade P. W. CD44 and its interaction with extracellular matrix. Adv Immunol. 1993;54:271–335. doi: 10.1016/s0065-2776(08)60537-4. [DOI] [PubMed] [Google Scholar]
  47. Lundin A., Engström-Laurent A., Hällgren R., Michaëlsson G. Circulating hyaluronate in psoriasis. Br J Dermatol. 1985 Jun;112(6):663–671. doi: 10.1111/j.1365-2133.1985.tb02334.x. [DOI] [PubMed] [Google Scholar]
  48. Lundin A., Engström-Laurent A., Michaëlsson G., Tengblad A. High levels of hyaluronate in suction blister fluid from active psoriatic lesions. Br J Dermatol. 1987 Mar;116(3):335–340. doi: 10.1111/j.1365-2133.1987.tb05847.x. [DOI] [PubMed] [Google Scholar]
  49. Mantovani A., Bussolino F., Dejana E. Cytokine regulation of endothelial cell function. FASEB J. 1992 May;6(8):2591–2599. doi: 10.1096/fasebj.6.8.1592209. [DOI] [PubMed] [Google Scholar]
  50. McHeyzer-Williams M. G., Davis M. M. Antigen-specific development of primary and memory T cells in vivo. Science. 1995 Apr 7;268(5207):106–111. doi: 10.1126/science.7535476. [DOI] [PubMed] [Google Scholar]
  51. Mikecz K., Brennan F. R., Kim J. H., Glant T. T. Anti-CD44 treatment abrogates tissue oedema and leukocyte infiltration in murine arthritis. Nat Med. 1995 Jun;1(6):558–563. doi: 10.1038/nm0695-558. [DOI] [PubMed] [Google Scholar]
  52. Miyake K., Medina K. L., Hayashi S., Ono S., Hamaoka T., Kincade P. W. Monoclonal antibodies to Pgp-1/CD44 block lympho-hemopoiesis in long-term bone marrow cultures. J Exp Med. 1990 Feb 1;171(2):477–488. doi: 10.1084/jem.171.2.477. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Miyake K., Underhill C. B., Lesley J., Kincade P. W. Hyaluronate can function as a cell adhesion molecule and CD44 participates in hyaluronate recognition. J Exp Med. 1990 Jul 1;172(1):69–75. doi: 10.1084/jem.172.1.69. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Oksala O., Salo T., Tammi R., Häkkinen L., Jalkanen M., Inki P., Larjava H. Expression of proteoglycans and hyaluronan during wound healing. J Histochem Cytochem. 1995 Feb;43(2):125–135. doi: 10.1177/43.2.7529785. [DOI] [PubMed] [Google Scholar]
  55. Pitsillides A. A., Worrall J. G., Wilkinson L. S., Bayliss M. T., Edwards J. C. Hyaluronan concentration in non-inflamed and rheumatoid synovium. Br J Rheumatol. 1994 Jan;33(1):5–10. doi: 10.1093/rheumatology/33.1.5. [DOI] [PubMed] [Google Scholar]
  56. Pober J. S., Cotran R. S. Cytokines and endothelial cell biology. Physiol Rev. 1990 Apr;70(2):427–451. doi: 10.1152/physrev.1990.70.2.427. [DOI] [PubMed] [Google Scholar]
  57. Rice G. E., Bevilacqua M. P. An inducible endothelial cell surface glycoprotein mediates melanoma adhesion. Science. 1989 Dec 8;246(4935):1303–1306. doi: 10.1126/science.2588007. [DOI] [PubMed] [Google Scholar]
  58. Saiki R. K., Bugawan T. L., Horn G. T., Mullis K. B., Erlich H. A. Analysis of enzymatically amplified beta-globin and HLA-DQ alpha DNA with allele-specific oligonucleotide probes. Nature. 1986 Nov 13;324(6093):163–166. doi: 10.1038/324163a0. [DOI] [PubMed] [Google Scholar]
  59. Spertini O., Luscinskas F. W., Kansas G. S., Munro J. M., Griffin J. D., Gimbrone M. A., Jr, Tedder T. F. Leukocyte adhesion molecule-1 (LAM-1, L-selectin) interacts with an inducible endothelial cell ligand to support leukocyte adhesion. J Immunol. 1991 Oct 15;147(8):2565–2573. [PubMed] [Google Scholar]
  60. Springer T. A. Traffic signals for lymphocyte recirculation and leukocyte emigration: the multistep paradigm. Cell. 1994 Jan 28;76(2):301–314. doi: 10.1016/0092-8674(94)90337-9. [DOI] [PubMed] [Google Scholar]
  61. Stamenkovic I., Aruffo A., Amiot M., Seed B. The hematopoietic and epithelial forms of CD44 are distinct polypeptides with different adhesion potentials for hyaluronate-bearing cells. EMBO J. 1991 Feb;10(2):343–348. doi: 10.1002/j.1460-2075.1991.tb07955.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  62. Swerlick R. A., Garcia-Gonzalez E., Kubota Y., Xu Y. L., Lawley T. J. Studies of the modulation of MHC antigen and cell adhesion molecule expression on human dermal microvascular endothelial cells. J Invest Dermatol. 1991 Aug;97(2):190–196. doi: 10.1111/1523-1747.ep12479643. [DOI] [PubMed] [Google Scholar]
  63. Tammi R., Paukkonen K., Wang C., Horsmanheimo M., Tammi M. Hyaluronan and CD44 in psoriatic skin. Intense staining for hyaluronan on dermal capillary loops and reduced expression of CD44 and hyaluronan in keratinocyte-leukocyte interfaces. Arch Dermatol Res. 1994;286(1):21–29. doi: 10.1007/BF00375839. [DOI] [PubMed] [Google Scholar]
  64. Thornhill M. H., Kyan-Aung U., Haskard D. O. IL-4 increases human endothelial cell adhesiveness for T cells but not for neutrophils. J Immunol. 1990 Apr 15;144(8):3060–3065. [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES