Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1998 Jan 1;101(1):128–136. doi: 10.1172/JCI680

Differentiation of cultured keratinocytes promotes the adherence of Streptococcus pyogenes.

G L Darmstadt 1, P Fleckman 1, M Jonas 1, E Chi 1, C E Rubens 1
PMCID: PMC508548  PMID: 9421474

Abstract

Based on a consideration of the histopathology of nonbullous impetigo that shows localization of Streptococcus pyogenes to highly differentiated, subcorneal keratinocytes, we hypothesized that adherence of an impetigo strain of S. pyogenes would be promoted by terminal differentiation of keratinocytes. An assay was developed in which S. pyogenes adhered via pilus-like projections from the cell wall to the surface of cultured human keratinocytes in a time- and inoculum-dependent manner suggestive of a receptor-mediated process. Terminal differentiation of keratinocytes was induced by increasing the calcium concentration in the growth medium, and was confirmed by morphologic analysis using electron microscopy. Adherence of S. pyogenes was three and fourfold greater to keratinocytes differentiated in 1.0 and 1.5 mM calcium, respectively, compared with undifferentiated keratinocytes in 0.15 mM calcium. The presence of calcium during the adherence assay further enhanced adherence nearly twofold. Adherence occurred preferentially to sites of contact between adjacent keratinocytes, suggesting that the keratinocyte receptor may be a molecule involved in cell-to-cell adhesion. In contrast, nonpathogenic Streptococcus gordonii adhered poorly to keratinocytes regardless of their state of terminal differentiation, and adherence of a pharyngeal strain of S. pyogenes was twofold greater to undifferentiated than differentiated keratinocytes. This is the first report of in vitro adherence of S. pyogenes to keratinocytes in a manner that emulates human impetigo. Adherence of only the impetigo strain, and not the pharyngeal strain of S. pyogenes or the nonpathogenic S. gorgonii isolate, was promoted by keratinocyte differentiation. This result provides a model system for investigating the molecular pathogenesis of streptococcal skin infections.

Full Text

The Full Text of this article is available as a PDF (700.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barker J. N., Mitra R. S., Griffiths C. E., Dixit V. M., Nickoloff B. J. Keratinocytes as initiators of inflammation. Lancet. 1991 Jan 26;337(8735):211–214. doi: 10.1016/0140-6736(91)92168-2. [DOI] [PubMed] [Google Scholar]
  2. Bessen D., Fischetti V. A. A human IgG receptor of group A streptococci is associated with tissue site of infection and streptococcal class. J Infect Dis. 1990 Apr;161(4):747–754. doi: 10.1093/infdis/161.4.747. [DOI] [PubMed] [Google Scholar]
  3. Chi E., Mehl T., Nunn D., Lory S. Interaction of Pseudomonas aeruginosa with A549 pneumocyte cells. Infect Immun. 1991 Mar;59(3):822–828. doi: 10.1128/iai.59.3.822-828.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Clark R. A. Fibronectin matrix deposition and fibronectin receptor expression in healing and normal skin. J Invest Dermatol. 1990 Jun;94(6 Suppl):128S–134S. doi: 10.1111/1523-1747.ep12876104. [DOI] [PubMed] [Google Scholar]
  5. Cleary P. P., Kaplan E. L., Handley J. P., Wlazlo A., Kim M. H., Hauser A. R., Schlievert P. M. Clonal basis for resurgence of serious Streptococcus pyogenes disease in the 1980s. Lancet. 1992 Feb 29;339(8792):518–521. doi: 10.1016/0140-6736(92)90339-5. [DOI] [PubMed] [Google Scholar]
  6. Darmstadt G. L., Lane A. T. Impetigo: an overview. Pediatr Dermatol. 1994 Dec;11(4):293–303. doi: 10.1111/j.1525-1470.1994.tb00092.x. [DOI] [PubMed] [Google Scholar]
  7. Darmstadt G. L. Oral antibiotic therapy for uncomplicated bacterial skin infections in children. Pediatr Infect Dis J. 1997 Feb;16(2):227–240. doi: 10.1097/00006454-199702000-00012. [DOI] [PubMed] [Google Scholar]
  8. Elias P. M., Feingold K. R. Lipids and the epidermal water barrier: metabolism, regulation, and pathophysiology. Semin Dermatol. 1992 Jun;11(2):176–182. [PubMed] [Google Scholar]
  9. Finlay B. B. Cell adhesion and invasion mechanisms in microbial pathogenesis. Curr Opin Cell Biol. 1990 Oct;2(5):815–820. doi: 10.1016/0955-0674(90)90078-s. [DOI] [PubMed] [Google Scholar]
  10. Fuchs E. Epidermal differentiation: the bare essentials. J Cell Biol. 1990 Dec;111(6 Pt 2):2807–2814. doi: 10.1083/jcb.111.6.2807. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Gailit J. O., Clark R. A. Integrins. Adv Dermatol. 1993;8:129–153. [PubMed] [Google Scholar]
  12. Gale C., Finkel D., Tao N., Meinke M., McClellan M., Olson J., Kendrick K., Hostetter M. Cloning and expression of a gene encoding an integrin-like protein in Candida albicans. Proc Natl Acad Sci U S A. 1996 Jan 9;93(1):357–361. doi: 10.1073/pnas.93.1.357. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Haanes E. J., Heath D. G., Cleary P. P. Architecture of the vir regulons of group A streptococci parallels opacity factor phenotype and M protein class. J Bacteriol. 1992 Aug;174(15):4967–4976. doi: 10.1128/jb.174.15.4967-4976.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hasty D. L., Ofek I., Courtney H. S., Doyle R. J. Multiple adhesins of streptococci. Infect Immun. 1992 Jun;60(6):2147–2152. doi: 10.1128/iai.60.6.2147-2152.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Hayden G. F. Skin diseases encountered in a pediatric clinic. A one-year prospective study. Am J Dis Child. 1985 Jan;139(1):36–38. doi: 10.1001/archpedi.1985.02140030038023. [DOI] [PubMed] [Google Scholar]
  16. Hennings H., Holbrook K. A. Calcium regulation of cell-cell contact and differentiation of epidermal cells in culture. An ultrastructural study. Exp Cell Res. 1983 Jan;143(1):127–142. doi: 10.1016/0014-4827(83)90115-5. [DOI] [PubMed] [Google Scholar]
  17. Hennings H., Michael D., Cheng C., Steinert P., Holbrook K., Yuspa S. H. Calcium regulation of growth and differentiation of mouse epidermal cells in culture. Cell. 1980 Jan;19(1):245–254. doi: 10.1016/0092-8674(80)90406-7. [DOI] [PubMed] [Google Scholar]
  18. Hohl D., Lichti U., Breitkreutz D., Steinert P. M., Roop D. R. Transcription of the human loricrin gene in vitro is induced by calcium and cell density and suppressed by retinoic acid. J Invest Dermatol. 1991 Apr;96(4):414–418. doi: 10.1111/1523-1747.ep12469779. [DOI] [PubMed] [Google Scholar]
  19. Isberg R. R., Leong J. M. Multiple beta 1 chain integrins are receptors for invasin, a protein that promotes bacterial penetration into mammalian cells. Cell. 1990 Mar 9;60(5):861–871. doi: 10.1016/0092-8674(90)90099-z. [DOI] [PubMed] [Google Scholar]
  20. Klotz S. A., Rutten M. J., Smith R. L., Babcock S. R., Cunningham M. D. Adherence of Candida albicans to immobilized extracellular matrix proteins is mediated by calcium-dependent surface glycoproteins. Microb Pathog. 1993 Feb;14(2):133–147. doi: 10.1006/mpat.1993.1014. [DOI] [PubMed] [Google Scholar]
  21. Kupper T. S. Immune and inflammatory processes in cutaneous tissues. Mechanisms and speculations. J Clin Invest. 1990 Dec;86(6):1783–1789. doi: 10.1172/JCI114907. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. LaPenta D., Rubens C., Chi E., Cleary P. P. Group A streptococci efficiently invade human respiratory epithelial cells. Proc Natl Acad Sci U S A. 1994 Dec 6;91(25):12115–12119. doi: 10.1073/pnas.91.25.12115. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Ladenson J. H., Bowers G. N., Jr Free calcium in serum. I. Determination with the ion-specific electrode, and factors affecting the results. Clin Chem. 1973 Jun;19(6):565–574. [PubMed] [Google Scholar]
  24. Leyden J. J., Stewart R., Kligman A. M. Experimental infections with group A streptococci in humans. J Invest Dermatol. 1980 Aug;75(2):196–201. doi: 10.1111/1523-1747.ep12522655. [DOI] [PubMed] [Google Scholar]
  25. Li L., Tennenbaum T., Yuspa S. H. Suspension-induced murine keratinocyte differentiation is mediated by calcium. J Invest Dermatol. 1996 Feb;106(2):254–260. doi: 10.1111/1523-1747.ep12340654. [DOI] [PubMed] [Google Scholar]
  26. Okada N., Liszewski M. K., Atkinson J. P., Caparon M. Membrane cofactor protein (CD46) is a keratinocyte receptor for the M protein of the group A streptococcus. Proc Natl Acad Sci U S A. 1995 Mar 28;92(7):2489–2493. doi: 10.1073/pnas.92.7.2489. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Okada N., Pentland A. P., Falk P., Caparon M. G. M protein and protein F act as important determinants of cell-specific tropism of Streptococcus pyogenes in skin tissue. J Clin Invest. 1994 Sep;94(3):965–977. doi: 10.1172/JCI117463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Perez-Casal J., Okada N., Caparon M. G., Scott J. R. Role of the conserved C-repeat region of the M protein of Streptococcus pyogenes. Mol Microbiol. 1995 Mar;15(5):907–916. doi: 10.1111/j.1365-2958.1995.tb02360.x. [DOI] [PubMed] [Google Scholar]
  29. Piepkorn M., Hovingh P., Dillberger A., Linker A. Divergent regulation of proteoglycan and glycosaminoglycan free chain expression in human keratinocytes and melanocytes. In Vitro Cell Dev Biol Anim. 1995 Jul-Aug;31(7):536–541. doi: 10.1007/BF02634031. [DOI] [PubMed] [Google Scholar]
  30. Podbielski A., Flosdorff A., Weber-Heynemann J. The group A streptococcal virR49 gene controls expression of four structural vir regulon genes. Infect Immun. 1995 Jan;63(1):9–20. doi: 10.1128/iai.63.1.9-20.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Podbielski A. Three different types of organization of the vir regulon in group A streptococci. Mol Gen Genet. 1993 Feb;237(1-2):287–300. doi: 10.1007/BF00282810. [DOI] [PubMed] [Google Scholar]
  32. Poumay Y., Pittelkow M. R. Cell density and culture factors regulate keratinocyte commitment to differentiation and expression of suprabasal K1/K10 keratins. J Invest Dermatol. 1995 Feb;104(2):271–276. doi: 10.1111/1523-1747.ep12612810. [DOI] [PubMed] [Google Scholar]
  33. Rubens C. E., Smith S., Hulse M., Chi E. Y., van Belle G. Respiratory epithelial cell invasion by group B streptococci. Infect Immun. 1992 Dec;60(12):5157–5163. doi: 10.1128/iai.60.12.5157-5163.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Schrager H. M., Rheinwald J. G., Wessels M. R. Hyaluronic acid capsule and the role of streptococcal entry into keratinocytes in invasive skin infection. J Clin Invest. 1996 Nov 1;98(9):1954–1958. doi: 10.1172/JCI118998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Scott J. R., Guenthner P. C., Malone L. M., Fischetti V. A. Conversion of an M- group A streptococcus to M+ by transfer of a plasmid containing an M6 gene. J Exp Med. 1986 Nov 1;164(5):1641–1651. doi: 10.1084/jem.164.5.1641. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Sela S., Aviv A., Tovi A., Burstein I., Caparon M. G., Hanski E. Protein F: an adhesin of Streptococcus pyogenes binds fibronectin via two distinct domains. Mol Microbiol. 1993 Dec;10(5):1049–1055. doi: 10.1111/j.1365-2958.1993.tb00975.x. [DOI] [PubMed] [Google Scholar]
  37. Stevens D. L. Invasive group A streptococcus infections. Clin Infect Dis. 1992 Jan;14(1):2–11. doi: 10.1093/clinids/14.1.2. [DOI] [PubMed] [Google Scholar]
  38. Stevens D. L., Tanner M. H., Winship J., Swarts R., Ries K. M., Schlievert P. M., Kaplan E. Severe group A streptococcal infections associated with a toxic shock-like syndrome and scarlet fever toxin A. N Engl J Med. 1989 Jul 6;321(1):1–7. doi: 10.1056/NEJM198907063210101. [DOI] [PubMed] [Google Scholar]
  39. Symington B. E., Carter W. G. Modulation of epidermal differentiation by epiligrin and integrin alpha 3 beta 1. J Cell Sci. 1995 Feb;108(Pt 2):831–838. doi: 10.1242/jcs.108.2.831. [DOI] [PubMed] [Google Scholar]
  40. Tunnessen W. W., Jr A survey of skin disorders seen in pediatric general and dermatology clinics. Pediatr Dermatol. 1984 Jan;1(3):219–222. doi: 10.1111/j.1525-1470.1984.tb01120.x. [DOI] [PubMed] [Google Scholar]
  41. Wannamaker L. W. Differences between streptococcal infections of the throat and of the skin (second of two parts). N Engl J Med. 1970 Jan 8;282(2):78–85. doi: 10.1056/NEJM197001082820206. [DOI] [PubMed] [Google Scholar]
  42. Watt F. M., Mattey D. L., Garrod D. R. Calcium-induced reorganization of desmosomal components in cultured human keratinocytes. J Cell Biol. 1984 Dec;99(6):2211–2215. doi: 10.1083/jcb.99.6.2211. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Wilson C. B., Jacobs R. F., Smith A. L. Cellular antibiotic pharmacology. Semin Perinatol. 1982 Apr;6(2):205–213. [PubMed] [Google Scholar]
  44. Wolf J. E., Rabinowitz L. G. Streptococcal toxic shock-like syndrome. Arch Dermatol. 1995 Jan;131(1):73–77. [PubMed] [Google Scholar]
  45. Yuspa S. H., Kilkenny A. E., Steinert P. M., Roop D. R. Expression of murine epidermal differentiation markers is tightly regulated by restricted extracellular calcium concentrations in vitro. J Cell Biol. 1989 Sep;109(3):1207–1217. doi: 10.1083/jcb.109.3.1207. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES