Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1998 Jan 1;101(1):178–187. doi: 10.1172/JCI562

Platelet microbicidal proteins and neutrophil defensin disrupt the Staphylococcus aureus cytoplasmic membrane by distinct mechanisms of action.

M R Yeaman 1, A S Bayer 1, S P Koo 1, W Foss 1, P M Sullam 1
PMCID: PMC508554  PMID: 9421480

Abstract

Platelet microbicidal proteins (PMPs) are hypothesized to exert microbicidal effects via cytoplasmic membrane disruption. Transmission electron microscopy demonstrated a temporal association between PMP exposure, damage of the Staphylococcus aureus cytoplasmic membrane ultrastructure, and subsequent cell death. To investigate the mechanisms of action of PMPs leading to membrane damage, we used flow cytometry to compare the effects of two distinct PMPs (thrombin-induced PMP-1 [tPMP-1] or PMP-2) with human neutrophil defensin-1 (hNP-1) on transmembrane potential (Deltapsi), membrane permeabilization, and killing of S. aureus. Related strains 6850 (Deltapsi -150 mV) and JB-1 (Deltapsi -100 mV; a respiration-deficient menadione auxotroph of 6850) were used to assess the influence of Deltapsi on peptide microbicidal effects. Propidium iodide (PI) uptake was used to detect membrane permeabilization, retention of 3,3'-dipentyloxacarbocyanine (DiOC5) was used to monitor membrane depolarization (Deltapsi), and quantitative culture or acridine orange accumulation was used to measure viability. PMP-2 rapidly depolarized and permeabilized strain 6850, with the extent of permeabilization inversely related to pH. tPMP-1 failed to depolarize strain 6850, but did permeabilize this strain in a manner directly related to pH. Depolarization, permeabilization, and killing of strain JB-1 due to PMPs were significantly less than in strain 6850. Growth in menadione reconstituted Deltapsi of JB-1 to a level equivalent to 6850, and was associated with greater depolarization due to PMP-2, but not tPMP-1. Reconstitution of Deltapsi also enhanced permeabilization and killing of JB-1 due to tPMP-1 or PMP-2. Both PMP-2 and tPMP-1 caused significant reductions in viability of strain 6850. In contrast to tPMP-1 or PMP-2, defensin hNP-1 depolarized, permeabilized, and killed both strains 6850 and JB-1 equally, and in a manner directly related to pH. Collectively, these data indicate that membrane dysfunction and cell death due to tPMP-1, PMP-2, or hNP-1 likely involve different mechanisms. These findings may also reveal new insights into the microbicidal activities versus mammalian cell toxicities of antimicrobial peptides.

Full Text

The Full Text of this article is available as a PDF (357.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Balwit J. M., van Langevelde P., Vann J. M., Proctor R. A. Gentamicin-resistant menadione and hemin auxotrophic Staphylococcus aureus persist within cultured endothelial cells. J Infect Dis. 1994 Oct;170(4):1033–1037. doi: 10.1093/infdis/170.4.1033. [DOI] [PubMed] [Google Scholar]
  2. Bancsi M. J., Thompson J., Bertina R. M. Stimulation of monocyte tissue factor expression in an in vitro model of bacterial endocarditis. Infect Immun. 1994 Dec;62(12):5669–5672. doi: 10.1128/iai.62.12.5669-5672.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bayer A. S., Ramos M. D., Menzies B. E., Yeaman M. R., Shen A. J., Cheung A. L. Hyperproduction of alpha-toxin by Staphylococcus aureus results in paradoxically reduced virulence in experimental endocarditis: a host defense role for platelet microbicidal proteins. Infect Immun. 1997 Nov;65(11):4652–4660. doi: 10.1128/iai.65.11.4652-4660.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Carroll S. F., Martinez R. J. Antibacterial peptide from normal rabbit serum. 3. Inhibition of microbial electron transport. Biochemistry. 1981 Oct 13;20(21):5988–5994. doi: 10.1021/bi00524a010. [DOI] [PubMed] [Google Scholar]
  5. Charp P. A., Rice W. G., Raynor R. L., Reimund E., Kinkade J. M., Jr, Ganz T., Selsted M. E., Lehrer R. I., Kuo J. F. Inhibition of protein kinase C by defensins, antibiotic peptides from human neutrophils. Biochem Pharmacol. 1988 Mar 1;37(5):951–956. doi: 10.1016/0006-2952(88)90187-6. [DOI] [PubMed] [Google Scholar]
  6. Darzynkiewicz Z., Li X., Gong J. Assays of cell viability: discrimination of cells dying by apoptosis. Methods Cell Biol. 1994;41:15–38. doi: 10.1016/s0091-679x(08)61707-0. [DOI] [PubMed] [Google Scholar]
  7. Davis K. A., Hatefi Y., Salemme F. R., Kamen M. D. Enzymic redox reactions of cytochromes c. Biochem Biophys Res Commun. 1972 Dec 4;49(5):1329–1335. doi: 10.1016/0006-291x(72)90612-2. [DOI] [PubMed] [Google Scholar]
  8. Dhawan V. K., Yeaman M. R., Cheung A. L., Kim E., Sullam P. M., Bayer A. S. Phenotypic resistance to thrombin-induced platelet microbicidal protein in vitro is correlated with enhanced virulence in experimental endocarditis due to Staphylococcus aureus. Infect Immun. 1997 Aug;65(8):3293–3299. doi: 10.1128/iai.65.8.3293-3299.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Drake T. A., Pang M. Effects of interleukin-1, lipopolysaccharide, and streptococci on procoagulant activity of cultured human cardiac valve endothelial and stromal cells. Infect Immun. 1989 Feb;57(2):507–512. doi: 10.1128/iai.57.2.507-512.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Drake T. A., Pang M. Staphylococcus aureus induces tissue factor expression in cultured human cardiac valve endothelium. J Infect Dis. 1988 Apr;157(4):749–756. doi: 10.1093/infdis/157.4.749. [DOI] [PubMed] [Google Scholar]
  11. Ganz T., Selsted M. E., Lehrer R. I. Defensins. Eur J Haematol. 1990 Jan;44(1):1–8. doi: 10.1111/j.1600-0609.1990.tb00339.x. [DOI] [PubMed] [Google Scholar]
  12. Harwig S. S., Ganz T., Lehrer R. I. Neutrophil defensins: purification, characterization, and antimicrobial testing. Methods Enzymol. 1994;236:160–172. doi: 10.1016/0076-6879(94)36015-4. [DOI] [PubMed] [Google Scholar]
  13. Kagan B. L., Selsted M. E., Ganz T., Lehrer R. I. Antimicrobial defensin peptides form voltage-dependent ion-permeable channels in planar lipid bilayer membranes. Proc Natl Acad Sci U S A. 1990 Jan;87(1):210–214. doi: 10.1073/pnas.87.1.210. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Kempf C., Klausner R. D., Weinstein J. N., Van Renswoude J., Pincus M., Blumenthal R. Voltage-dependent trans-bilayer orientation of melittin. J Biol Chem. 1982 Mar 10;257(5):2469–2476. [PubMed] [Google Scholar]
  15. Konisky J. Colicins and other bacteriocins with established modes of action. Annu Rev Microbiol. 1982;36:125–144. doi: 10.1146/annurev.mi.36.100182.001013. [DOI] [PubMed] [Google Scholar]
  16. Koo S. P., Bayer A. S., Sahl H. G., Proctor R. A., Yeaman M. R. Staphylocidal action of thrombin-induced platelet microbicidal protein is not solely dependent on transmembrane potential. Infect Immun. 1996 Mar;64(3):1070–1074. doi: 10.1128/iai.64.3.1070-1074.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Koo S. P., Yeaman M. R., Bayer A. S. Staphylocidal action of thrombin-induced platelet microbicidal protein is influenced by microenvironment and target cell growth phase. Infect Immun. 1996 Sep;64(9):3758–3764. doi: 10.1128/iai.64.9.3758-3764.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Koo S. P., Yeaman M. R., Nast C. C., Bayer A. S. The cytoplasmic membrane is a primary target for the staphylocidal action of thrombin-induced platelet microbicidal protein. Infect Immun. 1997 Nov;65(11):4795–4800. doi: 10.1128/iai.65.11.4795-4800.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Kordel M., Benz R., Sahl H. G. Mode of action of the staphylococcinlike peptide Pep 5: voltage-dependent depolarization of bacterial and artificial membranes. J Bacteriol. 1988 Jan;170(1):84–88. doi: 10.1128/jb.170.1.84-88.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Lehrer R. I., Barton A., Ganz T. Concurrent assessment of inner and outer membrane permeabilization and bacteriolysis in E. coli by multiple-wavelength spectrophotometry. J Immunol Methods. 1988 Apr 6;108(1-2):153–158. doi: 10.1016/0022-1759(88)90414-0. [DOI] [PubMed] [Google Scholar]
  21. Ohta M., Ito H., Masuda K., Tanaka S., Arakawa Y., Wacharotayankun R., Kato N. Mechanisms of antibacterial action of tachyplesins and polyphemusins, a group of antimicrobial peptides isolated from horseshoe crab hemocytes. Antimicrob Agents Chemother. 1992 Jul;36(7):1460–1465. doi: 10.1128/aac.36.7.1460. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. PERSON P., ZIPPER H., FINE A. S., MORA P. T. MACROION INTERACTIONS INVOLVING CYTOCHROME SYSTEM COMPONENTS. 3. INFLUENCES OF POLAR AND APOLAR RESIDUES UPON POLYLYSINE AND LYSINE COPOLYMER INHIBITIONS OF CYTOCHROME OXIDASE ACTIVITY. J Biol Chem. 1964 Dec;239:4159–4162. [PubMed] [Google Scholar]
  23. Pratt C. B., Sinkule J. A., Etcubanas E., Douglass E. C., Crom D. B., Choi K., Avery L. Phase I clinical and pharmacokinetic study of bisantrene in refractory pediatric solid tumors. Invest New Drugs. 1986;4(2):149–153. doi: 10.1007/BF00194594. [DOI] [PubMed] [Google Scholar]
  24. Ruhr E., Sahl H. G. Mode of action of the peptide antibiotic nisin and influence on the membrane potential of whole cells and on cytoplasmic and artificial membrane vesicles. Antimicrob Agents Chemother. 1985 May;27(5):841–845. doi: 10.1128/aac.27.5.841. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Selsted M. E. Investigational approaches for studying the structures and biological functions of myeloid antimicrobial peptides. Genet Eng (N Y) 1993;15:131–147. doi: 10.1007/978-1-4899-1666-2_6. [DOI] [PubMed] [Google Scholar]
  26. Shapiro H. M. Cell membrane potential analysis. Methods Cell Biol. 1990;33:25–35. doi: 10.1016/s0091-679x(08)60509-9. [DOI] [PubMed] [Google Scholar]
  27. Shimoda M., Ohki K., Shimamoto Y., Kohashi O. Morphology of defensin-treated Staphylococcus aureus. Infect Immun. 1995 Aug;63(8):2886–2891. doi: 10.1128/iai.63.8.2886-2891.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Sullam P. M., Frank U., Yeaman M. R., Täuber M. G., Bayer A. S., Chambers H. F. Effect of thrombocytopenia on the early course of streptococcal endocarditis. J Infect Dis. 1993 Oct;168(4):910–914. doi: 10.1093/infdis/168.4.910. [DOI] [PubMed] [Google Scholar]
  29. Traganos F., Darzynkiewicz Z. Lysosomal proton pump activity: supravital cell staining with acridine orange differentiates leukocyte subpopulations. Methods Cell Biol. 1994;41:185–194. doi: 10.1016/s0091-679x(08)61717-3. [DOI] [PubMed] [Google Scholar]
  30. Vaara M., Vaara T. Polycations sensitize enteric bacteria to antibiotics. Antimicrob Agents Chemother. 1983 Jul;24(1):107–113. doi: 10.1128/aac.24.1.107. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Wu T., Yeaman M. R., Bayer A. S. In vitro resistance to platelet microbicidal protein correlates with endocarditis source among bacteremic staphylococcal and streptococcal isolates. Antimicrob Agents Chemother. 1994 Apr;38(4):729–732. doi: 10.1128/aac.38.4.729. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Yang C. C., Konisky J. Colicin V-treated Escherichia coli does not generate membrane potential. J Bacteriol. 1984 May;158(2):757–759. doi: 10.1128/jb.158.2.757-759.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Yeaman M. R., Ibrahim A. S., Edwards J. E., Jr, Bayer A. S., Ghannoum M. A. Thrombin-induced rabbit platelet microbicidal protein is fungicidal in vitro. Antimicrob Agents Chemother. 1993 Mar;37(3):546–553. doi: 10.1128/aac.37.3.546. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Yeaman M. R., Puentes S. M., Norman D. C., Bayer A. S. Partial characterization and staphylocidal activity of thrombin-induced platelet microbicidal protein. Infect Immun. 1992 Mar;60(3):1202–1209. doi: 10.1128/iai.60.3.1202-1209.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Yeaman M. R., Soldan S. S., Ghannoum M. A., Edwards J. E., Jr, Filler S. G., Bayer A. S. Resistance to platelet microbicidal protein results in increased severity of experimental Candida albicans endocarditis. Infect Immun. 1996 Apr;64(4):1379–1384. doi: 10.1128/iai.64.4.1379-1384.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Yeaman M. R., Tang Y. Q., Shen A. J., Bayer A. S., Selsted M. E. Purification and in vitro activities of rabbit platelet microbicidal proteins. Infect Immun. 1997 Mar;65(3):1023–1031. doi: 10.1128/iai.65.3.1023-1031.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES