Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1998 Jan 1;101(1):195–201. doi: 10.1172/JCI530

The role of interleukin-converting enzyme in Fas-mediated apoptosis in HIV-1 infection.

E M Sloand 1, J P Maciejewski 1, T Sato 1, J Bruny 1, P Kumar 1, S Kim 1, F F Weichold 1, N S Young 1
PMCID: PMC508556  PMID: 9421482

Abstract

Apoptosis of CD4+ lymphocytes is partially responsible for the depletion of these cells in HIV-infected individuals. CD4+ lymphocytes from HIV-1-infected patients express higher membrane levels of the Fas receptor, and are particularly susceptible to apoptosis after Fas triggering. IL-1beta- converting enzyme (ICE) is a key enzyme of the apoptotic machinery involved in Fas-mediated apoptosis of normal lymphocytes. The role of ICE in mediating the increased susceptibility of CD4+ lymphocytes from HIV-1-infected patients to apoptosis has not been examined. In this study, we found that ICE mRNA was present in T cells from both HIV-1-infected patients and controls. Active ICE proteins, p10 and p20, were demonstrated by immunoblot in lymphocytes from HIV-1-infected patients and in normal lymphocytes after treatment with Fas agonist, CH11 mAb. Cocultivation of lymphocytes from HIV-1-infected persons with Fas antagonist, antibody ZB4, resulted in decreased expression of ICE protein in lymphocytes from HIV-infected patients, and decreased apoptosis. Similar effects were obtained when cells were treated with synthetic ICE inhibitors, which blocked apoptosis in response to Fas triggering. When CD4+ and CD8+ cells were sorted by flow cytometry and analyzed by reverse transcriptase PCR, ICE mRNA was present in both CD8+ and CD4+ cells. However, flow cytometric analysis of lymphocytes with intracellular staining for ICE demonstrated ICE protein in the CD4+ but not the CD8+ cell fraction derived from blood of HIV-1-infected patients. These data suggest that activation of ICE occurs in vivo in CD4+ lymphocytes from HIV-1-infected individuals, and may account for the increased susceptibility of CD4+ cells to apoptosis.

Full Text

The Full Text of this article is available as a PDF (291.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alderson M. R., Tough T. W., Davis-Smith T., Braddy S., Falk B., Schooley K. A., Goodwin R. G., Smith C. A., Ramsdell F., Lynch D. H. Fas ligand mediates activation-induced cell death in human T lymphocytes. J Exp Med. 1995 Jan 1;181(1):71–77. doi: 10.1084/jem.181.1.71. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Brunner T., Mogil R. J., LaFace D., Yoo N. J., Mahboubi A., Echeverri F., Martin S. J., Force W. R., Lynch D. H., Ware C. F. Cell-autonomous Fas (CD95)/Fas-ligand interaction mediates activation-induced apoptosis in T-cell hybridomas. Nature. 1995 Feb 2;373(6513):441–444. doi: 10.1038/373441a0. [DOI] [PubMed] [Google Scholar]
  3. Cerretti D. P., Kozlosky C. J., Mosley B., Nelson N., Van Ness K., Greenstreet T. A., March C. J., Kronheim S. R., Druck T., Cannizzaro L. A. Molecular cloning of the interleukin-1 beta converting enzyme. Science. 1992 Apr 3;256(5053):97–100. doi: 10.1126/science.1373520. [DOI] [PubMed] [Google Scholar]
  4. Chinnaiyan A. M., Woffendin C., Dixit V. M., Nabel G. J. The inhibition of pro-apoptotic ICE-like proteases enhances HIV replication. Nat Med. 1997 Mar;3(3):333–337. doi: 10.1038/nm0397-333. [DOI] [PubMed] [Google Scholar]
  5. Clem R. J., Miller L. K. Apoptosis reduces both the in vitro replication and the in vivo infectivity of a baculovirus. J Virol. 1993 Jul;67(7):3730–3738. doi: 10.1128/jvi.67.7.3730-3738.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Clouston W. M., Kerr J. F. Apoptosis, lymphocytotoxicity and the containment of viral infections. Med Hypotheses. 1985 Dec;18(4):399–404. doi: 10.1016/0306-9877(85)90107-0. [DOI] [PubMed] [Google Scholar]
  7. Debatin K. M., Fahrig-Faissner A., Enenkel-Stoodt S., Kreuz W., Benner A., Krammer P. H. High expression of APO-1 (CD95) on T lymphocytes from human immunodeficiency virus-1-infected children. Blood. 1994 May 15;83(10):3101–3103. [PubMed] [Google Scholar]
  8. Dhawan S., Heredia A., Wahl L. M., Epstein J. S., Meltzer M. S., Hewlett I. K. Interferon-gamma-induced downregulation of CD4 inhibits the entry of human immunodeficiency virus type-1 in primary monocytes. Pathobiology. 1995;63(2):93–99. doi: 10.1159/000163939. [DOI] [PubMed] [Google Scholar]
  9. Enari M., Hug H., Nagata S. Involvement of an ICE-like protease in Fas-mediated apoptosis. Nature. 1995 May 4;375(6526):78–81. doi: 10.1038/375078a0. [DOI] [PubMed] [Google Scholar]
  10. Faucheu C., Diu A., Chan A. W., Blanchet A. M., Miossec C., Hervé F., Collard-Dutilleul V., Gu Y., Aldape R. A., Lippke J. A. A novel human protease similar to the interleukin-1 beta converting enzyme induces apoptosis in transfected cells. EMBO J. 1995 May 1;14(9):1914–1922. doi: 10.1002/j.1460-2075.1995.tb07183.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Fernandes-Alnemri T., Litwack G., Alnemri E. S. CPP32, a novel human apoptotic protein with homology to Caenorhabditis elegans cell death protein Ced-3 and mammalian interleukin-1 beta-converting enzyme. J Biol Chem. 1994 Dec 9;269(49):30761–30764. [PubMed] [Google Scholar]
  12. Groux H., Torpier G., Monté D., Mouton Y., Capron A., Ameisen J. C. Activation-induced death by apoptosis in CD4+ T cells from human immunodeficiency virus-infected asymptomatic individuals. J Exp Med. 1992 Feb 1;175(2):331–340. doi: 10.1084/jem.175.2.331. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Katsikis P. D., Wunderlich E. S., Smith C. A., Herzenberg L. A., Herzenberg L. A. Fas antigen stimulation induces marked apoptosis of T lymphocytes in human immunodeficiency virus-infected individuals. J Exp Med. 1995 Jun 1;181(6):2029–2036. doi: 10.1084/jem.181.6.2029. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Kuida K., Lippke J. A., Ku G., Harding M. W., Livingston D. J., Su M. S., Flavell R. A. Altered cytokine export and apoptosis in mice deficient in interleukin-1 beta converting enzyme. Science. 1995 Mar 31;267(5206):2000–2003. doi: 10.1126/science.7535475. [DOI] [PubMed] [Google Scholar]
  15. Kumar S., Harvey N. L. Role of multiple cellular proteases in the execution of programmed cell death. FEBS Lett. 1995 Nov 20;375(3):169–173. doi: 10.1016/0014-5793(95)01186-i. [DOI] [PubMed] [Google Scholar]
  16. Lazebnik Y. A., Kaufmann S. H., Desnoyers S., Poirier G. G., Earnshaw W. C. Cleavage of poly(ADP-ribose) polymerase by a proteinase with properties like ICE. Nature. 1994 Sep 22;371(6495):346–347. doi: 10.1038/371346a0. [DOI] [PubMed] [Google Scholar]
  17. Lippke J. A., Gu Y., Sarnecki C., Caron P. R., Su M. S. Identification and characterization of CPP32/Mch2 homolog 1, a novel cysteine protease similar to CPP32. J Biol Chem. 1996 Jan 26;271(4):1825–1828. doi: 10.1074/jbc.271.4.1825. [DOI] [PubMed] [Google Scholar]
  18. Los M., Van de Craen M., Penning L. C., Schenk H., Westendorp M., Baeuerle P. A., Dröge W., Krammer P. H., Fiers W., Schulze-Osthoff K. Requirement of an ICE/CED-3 protease for Fas/APO-1-mediated apoptosis. Nature. 1995 May 4;375(6526):81–83. doi: 10.1038/375081a0. [DOI] [PubMed] [Google Scholar]
  19. Maciejewski J., Selleri C., Anderson S., Young N. S. Fas antigen expression on CD34+ human marrow cells is induced by interferon gamma and tumor necrosis factor alpha and potentiates cytokine-mediated hematopoietic suppression in vitro. Blood. 1995 Jun 1;85(11):3183–3190. [PubMed] [Google Scholar]
  20. Martin S. J., Amarante-Mendes G. P., Shi L., Chuang T. H., Casiano C. A., O'Brien G. A., Fitzgerald P., Tan E. M., Bokoch G. M., Greenberg A. H. The cytotoxic cell protease granzyme B initiates apoptosis in a cell-free system by proteolytic processing and activation of the ICE/CED-3 family protease, CPP32, via a novel two-step mechanism. EMBO J. 1996 May 15;15(10):2407–2416. [PMC free article] [PubMed] [Google Scholar]
  21. Mashima T., Naito M., Fujita N., Noguchi K., Tsuruo T. Identification of actin as a substrate of ICE and an ICE-like protease and involvement of an ICE-like protease but not ICE in VP-16-induced U937 apoptosis. Biochem Biophys Res Commun. 1995 Dec 26;217(3):1185–1192. doi: 10.1006/bbrc.1995.2894. [DOI] [PubMed] [Google Scholar]
  22. Meyaard L., Otto S. A., Jonker R. R., Mijnster M. J., Keet R. P., Miedema F. Programmed death of T cells in HIV-1 infection. Science. 1992 Jul 10;257(5067):217–219. doi: 10.1126/science.1352911. [DOI] [PubMed] [Google Scholar]
  23. Miller B. E., Krasney P. A., Gauvin D. M., Holbrook K. B., Koonz D. J., Abruzzese R. V., Miller R. E., Pagani K. A., Dolle R. E., Ator M. A. Inhibition of mature IL-1 beta production in murine macrophages and a murine model of inflammation by WIN 67694, an inhibitor of IL-1 beta converting enzyme. J Immunol. 1995 Feb 1;154(3):1331–1338. [PubMed] [Google Scholar]
  24. Munday N. A., Vaillancourt J. P., Ali A., Casano F. J., Miller D. K., Molineaux S. M., Yamin T. T., Yu V. L., Nicholson D. W. Molecular cloning and pro-apoptotic activity of ICErelII and ICErelIII, members of the ICE/CED-3 family of cysteine proteases. J Biol Chem. 1995 Jun 30;270(26):15870–15876. doi: 10.1074/jbc.270.26.15870. [DOI] [PubMed] [Google Scholar]
  25. Naito M., Nagashima K., Mashima T., Tsuruo T. Phosphatidylserine externalization is a downstream event of interleukin-1 beta-converting enzyme family protease activation during apoptosis. Blood. 1997 Mar 15;89(6):2060–2066. [PubMed] [Google Scholar]
  26. Nicholson D. W., Ali A., Thornberry N. A., Vaillancourt J. P., Ding C. K., Gallant M., Gareau Y., Griffin P. R., Labelle M., Lazebnik Y. A. Identification and inhibition of the ICE/CED-3 protease necessary for mammalian apoptosis. Nature. 1995 Jul 6;376(6535):37–43. doi: 10.1038/376037a0. [DOI] [PubMed] [Google Scholar]
  27. Oyaizu N., Pahwa S. Role of apoptosis in HIV disease pathogenesis. J Clin Immunol. 1995 Sep;15(5):217–231. doi: 10.1007/BF01540879. [DOI] [PubMed] [Google Scholar]
  28. Piasecki E., Ledwoń T. K., Inglot A. D., Knysz B., Simon K., Inglot M., Gładysz A. Interferon and tumor necrosis factor responses of HIV+ patients as markers for monitoring of the AIDS progression. Arch Immunol Ther Exp (Warsz) 1994;42(5-6):439–445. [PubMed] [Google Scholar]
  29. Sander B., Andersson J., Andersson U. Assessment of cytokines by immunofluorescence and the paraformaldehyde-saponin procedure. Immunol Rev. 1991 Feb;119:65–93. doi: 10.1111/j.1600-065x.1991.tb00578.x. [DOI] [PubMed] [Google Scholar]
  30. Selleri C., Sato T., Del Vecchio L., Luciano L., Barrett A. J., Rotoli B., Young N. S., Maciejewski J. P. Involvement of Fas-mediated apoptosis in the inhibitory effects of interferon-alpha in chronic myelogenous leukemia. Blood. 1997 Feb 1;89(3):957–964. [PubMed] [Google Scholar]
  31. Sloand E. M., Young N. S., Kumar P., Weichold F. F., Sato T., Maciejewski J. P. Role of Fas ligand and receptor in the mechanism of T-cell depletion in acquired immunodeficiency syndrome: effect on CD4+ lymphocyte depletion and human immunodeficiency virus replication. Blood. 1997 Feb 15;89(4):1357–1363. [PubMed] [Google Scholar]
  32. Terai C., Kornbluth R. S., Pauza C. D., Richman D. D., Carson D. A. Apoptosis as a mechanism of cell death in cultured T lymphoblasts acutely infected with HIV-1. J Clin Invest. 1991 May;87(5):1710–1715. doi: 10.1172/JCI115188. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Tewari M., Quan L. T., O'Rourke K., Desnoyers S., Zeng Z., Beidler D. R., Poirier G. G., Salvesen G. S., Dixit V. M. Yama/CPP32 beta, a mammalian homolog of CED-3, is a CrmA-inhibitable protease that cleaves the death substrate poly(ADP-ribose) polymerase. Cell. 1995 Jun 2;81(5):801–809. doi: 10.1016/0092-8674(95)90541-3. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES