Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1998 Jan 1;101(1):235–242. doi: 10.1172/JCI626

Nitric oxide synthase (NOS) inhibition for one week improves renal sodium and water excretion in cirrhotic rats with ascites.

P Y Martin 1, M Ohara 1, P Gines 1, D L Xu 1, J St John 1, M Niederberger 1, R W Schrier 1
PMCID: PMC508560  PMID: 9421486

Abstract

Normalization of the increased vascular nitric oxide (NO) generation with low doses of NG-nitro-L-arginine methyl ester (L-NAME) corrects the hemodynamic abnormalities of cirrhotic rats with ascites. We have undertaken this study to investigate the effect of the normalization of vascular NO production, as estimated by aortic cyclic guanosine monophosphate (cGMP) concentration and endothelial nitric oxide synthase (eNOS) protein expression in the aorta and mesenteric artery, on sodium and water excretion. Rats with carbon tetrachloride-induced cirrhosis and ascites were investigated using balance studies. The cirrhotic rats were separated into two groups, one receiving 0.5 mg/kg per day of L-NAME (CIR-NAME) during 7 d, whereas the other group (CIR) was administrated the same volume of vehicle. Two other groups of rats were used as controls, one group treated with L-NAME and another group receiving the same volume of vehicle. Sodium and water excretion was measured on days 0 and 7. On day 8, blood samples were collected for electrolyte and hormone measurements, and aorta and mesenteric arteries were harvested for cGMP determination and nitric oxide synthase (NOS) immunoblotting. Aortic cGMP and eNOS protein expression in the aorta and mesenteric artery were increased in CIR as compared with CIR-NAME. Both cirrhotic groups had a similar decrease in sodium excretion on day 0 (0.7 versus 0.6 mmol per day, NS) and a positive sodium balance (+0.9 versus +1.2 mmol per day, NS). On day 7, CIR-NAME rats had an increase in sodium excretion as compared with the CIR rats (sodium excretion: 2.4 versus 0.7 mmol per day, P < 0.001) and a negative sodium balance (-0.5 versus +0.8 mmol per day, P < 0.001). The excretion of a water load was also increased after L-NAME administration (from 28+/-5% to 65+/-7, P < 0.05). Plasma renin activity, aldosterone and arginine vasopressin were also significantly decreased in the CIR-NAME, as compared with the CIR rats. The results thus indicate that normalization of aortic cGMP and eNOS protein expression in vascular tissue is associated with increased sodium and water excretion in cirrhotic rats with ascites.

Full Text

The Full Text of this article is available as a PDF (177.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abraham W. T., Lauwaars M. E., Kim J. K., Peña R. L., Schrier R. W. Reversal of atrial natriuretic peptide resistance by increasing distal tubular sodium delivery in patients with decompensated cirrhosis. Hepatology. 1995 Sep;22(3):737–743. [PubMed] [Google Scholar]
  2. Angeli P., Jiménez W., Arroyo V., Mackenzie H. S., Zhang P. L., Clària J., Rivera F., Brenner B. M., Rodés J. Renal effects of natriuretic peptide receptor blockade in cirrhotic rats with ascites. Hepatology. 1994 Oct;20(4 Pt 1):948–954. doi: 10.1002/hep.1840200425. [DOI] [PubMed] [Google Scholar]
  3. Arnal J. F., Warin L., Michel J. B. Determinants of aortic cyclic guanosine monophosphate in hypertension induced by chronic inhibition of nitric oxide synthase. J Clin Invest. 1992 Aug;90(2):647–652. doi: 10.1172/JCI115906. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Arroyo V., Ginès P., Gerbes A. L., Dudley F. J., Gentilini P., Laffi G., Reynolds T. B., Ring-Larsen H., Schölmerich J. Definition and diagnostic criteria of refractory ascites and hepatorenal syndrome in cirrhosis. International Ascites Club. Hepatology. 1996 Jan;23(1):164–176. doi: 10.1002/hep.510230122. [DOI] [PubMed] [Google Scholar]
  5. Atucha N. M., Shah V., García-Cardeña G., Sessa W. E., Groszmann R. J. Role of endothelium in the abnormal response of mesenteric vessels in rats with portal hypertension and liver cirrhosis. Gastroenterology. 1996 Dec;111(6):1627–1632. doi: 10.1016/s0016-5085(96)70026-4. [DOI] [PubMed] [Google Scholar]
  6. Battista S., Bar F., Mengozzi G., Zanon E., Grosso M., Molino G. Hyperdynamic circulation in patients with cirrhosis: direct measurement of nitric oxide levels in hepatic and portal veins. J Hepatol. 1997 Jan;26(1):75–80. doi: 10.1016/s0168-8278(97)80012-8. [DOI] [PubMed] [Google Scholar]
  7. Bomzon A., Blendis L. M. The nitric oxide hypothesis and the hyperdynamic circulation in cirrhosis. Hepatology. 1994 Nov;20(5):1343–1350. [PubMed] [Google Scholar]
  8. Campillo B., Chabrier P. E., Pelle G., Sediame S., Atlan G., Fouet P., Adnot S. Inhibition of nitric oxide synthesis in the forearm arterial bed of patients with advanced cirrhosis. Hepatology. 1995 Nov;22(5):1423–1429. [PubMed] [Google Scholar]
  9. Camps J., Solá J., Arroyo V., Pérez-Ayuso R. M., Gaya J., Rivera F., Rodés J. Temporal relationship between the impairment of free water excretion and antidiuretic hormone hypersecretion in rats with experimental cirrhosis. Gastroenterology. 1987 Sep;93(3):498–505. doi: 10.1016/0016-5085(87)90911-5. [DOI] [PubMed] [Google Scholar]
  10. Castro A., Jiménez W., Clària J., Ros J., Martínez J. M., Bosch M., Arroyo V., Piulats J., Rivera F., Rodés J. Impaired responsiveness to angiotensin II in experimental cirrhosis: role of nitric oxide. Hepatology. 1993 Aug;18(2):367–372. [PubMed] [Google Scholar]
  11. Claria J., Jiménez W., Arroyo V., La Villa G., López C., Asbert M., Castro A., Gaya J., Rivera F., Rodés J. Effect of V1-vasopressin receptor blockade on arterial pressure in conscious rats with cirrhosis and ascites. Gastroenterology. 1991 Feb;100(2):494–501. doi: 10.1016/0016-5085(91)90222-7. [DOI] [PubMed] [Google Scholar]
  12. Clària J., Jiménez W., Ros J., Asbert M., Castro A., Arroyo V., Rivera F., Rodés J. Pathogenesis of arterial hypotension in cirrhotic rats with ascites: role of endogenous nitric oxide. Hepatology. 1992 Feb;15(2):343–349. doi: 10.1002/hep.1840150227. [DOI] [PubMed] [Google Scholar]
  13. DiBona G. F., Kopp U. C. Neural control of renal function. Physiol Rev. 1997 Jan;77(1):75–197. doi: 10.1152/physrev.1997.77.1.75. [DOI] [PubMed] [Google Scholar]
  14. DiBona G. F. Neural control of renal tubular solute and water transport. Miner Electrolyte Metab. 1989;15(1-2):44–50. [PubMed] [Google Scholar]
  15. DiBona G. F., Sawin L. L. Role of renal nerves in sodium retention of cirrhosis and congestive heart failure. Am J Physiol. 1991 Feb;260(2 Pt 2):R298–R305. doi: 10.1152/ajpregu.1991.260.2.R298. [DOI] [PubMed] [Google Scholar]
  16. Hartleb M., Moreau R., Cailmail S., Gaudin C., Lebrec D. Vascular hyporesponsiveness to endothelin 1 in rats with cirrhosis. Gastroenterology. 1994 Oct;107(4):1085–1093. doi: 10.1016/0016-5085(94)90233-x. [DOI] [PubMed] [Google Scholar]
  17. Jiménez W., Clária J., Arroyo V., Rodés J. Carbon tetrachloride induced cirrhosis in rats: a useful tool for investigating the pathogenesis of ascites in chronic liver disease. J Gastroenterol Hepatol. 1992 Jan-Feb;7(1):90–97. doi: 10.1111/j.1440-1746.1992.tb00940.x. [DOI] [PubMed] [Google Scholar]
  18. Kim J. K., Summer S. N., Howard R. L., Schrier R. W. Vasopressin gene expression in rats with experimental cirrhosis. Hepatology. 1993 Jan;17(1):143–147. [PubMed] [Google Scholar]
  19. Laffi G., Foschi M., Masini E., Simoni A., Mugnai L., La Villa G., Barletta G., Mannaioni P. F., Gentilini P. Increased production of nitric oxide by neutrophils and monocytes from cirrhotic patients with ascites and hyperdynamic circulation. Hepatology. 1995 Dec;22(6):1666–1673. [PubMed] [Google Scholar]
  20. Lee F. Y., Albillos A., Colombato L. A., Groszmann R. J. The role of nitric oxide in the vascular hyporesponsiveness to methoxamine in portal hypertensive rats. Hepatology. 1992 Oct;16(4):1043–1048. doi: 10.1002/hep.1840160430. [DOI] [PubMed] [Google Scholar]
  21. Lee F. Y., Colombato L. A., Albillos A., Groszmann R. J. N omega-nitro-L-arginine administration corrects peripheral vasodilation and systemic capillary hypotension and ameliorates plasma volume expansion and sodium retention in portal hypertensive rats. Hepatology. 1993 Jan;17(1):84–90. [PubMed] [Google Scholar]
  22. Lee M. E., Miller W. L., Edwards B. S., Burnett J. C., Jr Role of endogenous atrial natriuretic factor in acute congestive heart failure. J Clin Invest. 1989 Dec;84(6):1962–1966. doi: 10.1172/JCI114385. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Lenz K., Hörtnagl H., Druml W., Grimm G., Laggner A., Schneeweisz B., Kleinberger G. Beneficial effect of 8-ornithin vasopressin on renal dysfunction in decompensated cirrhosis. Gut. 1989 Jan;30(1):90–96. doi: 10.1136/gut.30.1.90. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Martin P. Y., Xu D. L., Niederberger M., Weigert A., Tsai P., St John J., Gines P., Schrier R. W. Upregulation of endothelial constitutive NOS: a major role in the increased NO production in cirrhotic rats. Am J Physiol. 1996 Mar;270(3 Pt 2):F494–F499. doi: 10.1152/ajprenal.1996.270.3.F494. [DOI] [PubMed] [Google Scholar]
  25. Matsumoto A., Ogura K., Hirata Y., Kakoki M., Watanabe F., Takenaka K., Shiratori Y., Momomura S., Omata M. Increased nitric oxide in the exhaled air of patients with decompensated liver cirrhosis. Ann Intern Med. 1995 Jul 15;123(2):110–113. doi: 10.7326/0003-4819-123-2-199507150-00005. [DOI] [PubMed] [Google Scholar]
  26. Moncada S., Palmer R. M., Higgs E. A. Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol Rev. 1991 Jun;43(2):109–142. [PubMed] [Google Scholar]
  27. Morales-Ruiz M., Jiménez W., Pérez-Sala D., Ros J., Leivas A., Lamas S., Rivera F., Arroyo V. Increased nitric oxide synthase expression in arterial vessels of cirrhotic rats with ascites. Hepatology. 1996 Dec;24(6):1481–1486. doi: 10.1053/jhep.1996.v24.pm0008938184. [DOI] [PubMed] [Google Scholar]
  28. Murray B. M., Paller M. S. Pressor resistance to vasopressin in sodium depletion, potassium depletion, and cirrhosis. Am J Physiol. 1986 Sep;251(3 Pt 2):R525–R530. doi: 10.1152/ajpregu.1986.251.3.R525. [DOI] [PubMed] [Google Scholar]
  29. Nava E., Palmer R. M., Moncada S. Inhibition of nitric oxide synthesis in septic shock: how much is beneficial? Lancet. 1991 Dec 21;338(8782-8783):1555–1557. doi: 10.1016/0140-6736(91)92375-c. [DOI] [PubMed] [Google Scholar]
  30. Niederberger M., Ginès P., Tsai P., Martin P. Y., Morris K., Weigert A., McMurtry I., Schrier R. W. Increased aortic cyclic guanosine monophosphate concentration in experimental cirrhosis in rats: evidence for a role of nitric oxide in the pathogenesis of arterial vasodilation in cirrhosis. Hepatology. 1995 Jun;21(6):1625–1631. [PubMed] [Google Scholar]
  31. Niederberger M., Ginés P., Martin P. Y., Tsai P., Morris K., McMurtry I., Schrier R. W. Comparison of vascular nitric oxide production and systemic hemodynamics in cirrhosis versus prehepatic portal hypertension in rats. Hepatology. 1996 Oct;24(4):947–951. doi: 10.1002/hep.510240432. [DOI] [PubMed] [Google Scholar]
  32. Niederberger M., Martin P. Y., Ginès P., Morris K., Tsai P., Xu D. L., McMurtry I., Schrier R. W. Normalization of nitric oxide production corrects arterial vasodilation and hyperdynamic circulation in cirrhotic rats. Gastroenterology. 1995 Nov;109(5):1624–1630. doi: 10.1016/0016-5085(95)90652-5. [DOI] [PubMed] [Google Scholar]
  33. Ortíz M. C., Fortepiani L. A., Martínez C., Atucha N. M., García-Estañ J. Vascular hyporesponsiveness in aortic rings from cirrhotic rats: role of nitric oxide and endothelium. Clin Sci (Lond) 1996 Dec;91(6):733–738. doi: 10.1042/cs0910733. [DOI] [PubMed] [Google Scholar]
  34. Poulos J. E., Gower W. R., Fontanet H. L., Kalmus G. W., Vesely D. L. Cirrhosis with ascites: increased atrial natriuretic peptide messenger RNA expression in rat ventricle. Gastroenterology. 1995 May;108(5):1496–1503. doi: 10.1016/0016-5085(95)90699-1. [DOI] [PubMed] [Google Scholar]
  35. Proctor E., Chatamra K. High yield micronodular cirrhosis in the rat. Gastroenterology. 1982 Dec;83(6):1183–1190. [PubMed] [Google Scholar]
  36. Pérez-Ayuso R. M., Arroyo V., Planas R., Gaya J., Bory F., Rimola A., Rivera F., Rodés J. Randomized comparative study of efficacy of furosemide versus spironolactone in nonazotemic cirrhosis with ascites. Relationship between the diuretic response and the activity of the renin-aldosterone system. Gastroenterology. 1983 May;84(5 Pt 1):961–968. [PubMed] [Google Scholar]
  37. Rodríguez-Martínez M., Sawin L. L., DiBona G. F. Arterial and cardiopulmonary baroreflex control of renal nerve activity in cirrhosis. Am J Physiol. 1995 Jan;268(1 Pt 2):R117–R129. doi: 10.1152/ajpregu.1995.268.1.R117. [DOI] [PubMed] [Google Scholar]
  38. Roman R. J., Zou A. P. Influence of the renal medullary circulation on the control of sodium excretion. Am J Physiol. 1993 Nov;265(5 Pt 2):R963–R973. doi: 10.1152/ajpregu.1993.265.5.R963. [DOI] [PubMed] [Google Scholar]
  39. Ros J., Clària J., Jiménez W., Bosch-Marcé M., Angeli P., Arroyo V., Rivera F., Rodés J. Role of nitric oxide and prostacyclin in the control of renal perfusion in experimental cirrhosis. Hepatology. 1995 Sep;22(3):915–920. [PubMed] [Google Scholar]
  40. Ros J., Jiménez W., Lamas S., Clària J., Arroyo V., Rivera F., Rodés J. Nitric oxide production in arterial vessels of cirrhotic rats. Hepatology. 1995 Feb;21(2):554–560. [PubMed] [Google Scholar]
  41. Schrier R. W., Arroyo V., Bernardi M., Epstein M., Henriksen J. H., Rodés J. Peripheral arterial vasodilation hypothesis: a proposal for the initiation of renal sodium and water retention in cirrhosis. Hepatology. 1988 Sep-Oct;8(5):1151–1157. doi: 10.1002/hep.1840080532. [DOI] [PubMed] [Google Scholar]
  42. Schrier R. W., De Wardener H. E. Tubular reabsorption of sodium ion: influence of factors other than aldosterone and glomerular filtration rate. 1. N Engl J Med. 1971 Nov;285(22):1231–1243. doi: 10.1056/NEJM197111252852205. [DOI] [PubMed] [Google Scholar]
  43. Shapiro M. D., Nicholls K. M., Groves B. M., Kluge R., Chung H. M., Bichet D. G., Schrier R. W. Interrelationship between cardiac output and vascular resistance as determinants of effective arterial blood volume in cirrhotic patients. Kidney Int. 1985 Aug;28(2):206–211. doi: 10.1038/ki.1985.142. [DOI] [PubMed] [Google Scholar]
  44. Sieber C. C., Groszmann R. J. Nitric oxide mediates hyporeactivity to vasopressors in mesenteric vessels of portal hypertensive rats. Gastroenterology. 1992 Jul;103(1):235–239. doi: 10.1016/0016-5085(92)91118-n. [DOI] [PubMed] [Google Scholar]
  45. Soualmia H., Masson F., Barthélemy C., Maistre G., Carayon A. Cellular mechanism of angiotensin II-induced atrial natriuretic peptide release in rat right atrial tissue. Life Sci. 1996;58(19):1621–1629. doi: 10.1016/0024-3205(96)00137-3. [DOI] [PubMed] [Google Scholar]
  46. Tsuboi Y., Ishikawa S., Fujisawa G., Okada K., Saito T. Therapeutic efficacy of the non-peptide AVP antagonist OPC-31260 in cirrhotic rats. Kidney Int. 1994 Jul;46(1):237–244. doi: 10.1038/ki.1994.265. [DOI] [PubMed] [Google Scholar]
  47. Vallance P., Moncada S. Hyperdynamic circulation in cirrhosis: a role for nitric oxide? Lancet. 1991 Mar 30;337(8744):776–778. doi: 10.1016/0140-6736(91)91384-7. [DOI] [PubMed] [Google Scholar]
  48. Weigert A. L., Martin P. Y., Niederberger M., Higa E. M., McMurtry I. F., Gines P., Schrier R. W. Endothelium-dependent vascular hyporesponsiveness without detection of nitric oxide synthase induction in aortas of cirrhotic rats. Hepatology. 1995 Dec;22(6):1856–1862. [PubMed] [Google Scholar]
  49. Witte M. H., Witte C. L., Dumont A. E. Progress in liver disease: physiological factors involved in the causation of cirrhotic ascites. Gastroenterology. 1971 Nov;61(5):742–750. [PubMed] [Google Scholar]
  50. Wong K. R., Berry C. A., Cogan M. G. Alpha 1-adrenergic control of chloride transport in the rat S1 proximal tubule. Am J Physiol. 1996 Jun;270(6 Pt 2):F1049–F1056. doi: 10.1152/ajprenal.1996.270.6.F1049. [DOI] [PubMed] [Google Scholar]
  51. Xie M. H., Liu F. Y., Wong P. C., Timmermans P. B., Cogan M. G. Proximal nephron and renal effects of DuP 753, a nonpeptide angiotensin II receptor antagonist. Kidney Int. 1990 Sep;38(3):473–479. doi: 10.1038/ki.1990.228. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES