Abstract
Cardiac pacemaking offers a unique opportunity for direct gene transfer into the heart. An experimental system was developed to assay the effects of transferring the human beta2 adrenergic receptor (beta2AR) under in vitro, ex vivo, and finally in vivo conditions. Constructs encoding either beta2AR or LacZ were used in chronotropy studies with isolated myocytes, and transplanted as well as endogenous murine hearts. Murine embryonic cardiac myocytes were transiently transfected with plasmid constructs. The total percentage of myocytes spontaneously contracting was greater in beta2AR transfected cells, as compared with control cells (67 vs. 42+/-5%). In addition, the percentage of myocytes with chronotropic rates > 60 beats per minute (bpm) was higher in the beta2AR population, as compared with control cells (37 vs. 15+/-5%). The average contractile rate was greater in the beta2AR transfected myocytes at baseline (71+/-14 vs. 50+/-10 bpm; P < 0.001) as well as with the addition of 10(-)3 M isoproterenol (98+/-26 vs. 75+/-18 bpm; P < 0.05). Based on these results, a murine neonatal cardiac transplantation model was used to study the ex vivo effects of targeted expression of beta2AR. The constructs were transfected into the right atrium of transplanted hearts. Injection of the beta2AR construct increased the heart rate by approximately 40% (224+/-37 vs. 161+/-42 bpm; P < 0.005). Finally, the constructs were tested in vivo with injection into the right atrium of the endogenous heart. These results were similar to the ex vivo data with injection of the beta2AR constructs increasing the endogenous heart rates by approximately 40%, as compared with control injected hearts (550+/-42 vs. 390+/-37 bpm; P < 0.05). These studies demonstrate that local targeting of gene expression may be a feasible modality to regulate the cardiac pacemaking activity.
Full Text
The Full Text of this article is available as a PDF (229.0 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Barnett J. V., Haigh L. S., Marsh J. D., Galper J. B. Effects of low density lipoproteins and mevinolin on sympathetic responsiveness in cultured chick atrial cells. Regulation of beta-adrenergic receptors and alpha s. J Biol Chem. 1989 Jun 25;264(18):10779–10786. [PubMed] [Google Scholar]
- Beau S. L., Hand D. E., Schuessler R. B., Bromberg B. I., Kwon B., Boineau J. P., Saffitz J. E. Relative densities of muscarinic cholinergic and beta-adrenergic receptors in the canine sinoatrial node and their relation to sites of pacemaker activity. Circ Res. 1995 Nov;77(5):957–963. doi: 10.1161/01.res.77.5.957. [DOI] [PubMed] [Google Scholar]
- Bertin B., Mansier P., Makeh I., Briand P., Rostene W., Swynghedauw B., Strosberg A. D. Specific atrial overexpression of G protein coupled human beta 1 adrenoceptors in transgenic mice. Cardiovasc Res. 1993 Sep;27(9):1606–1612. doi: 10.1093/cvr/27.9.1606. [DOI] [PubMed] [Google Scholar]
- Chung F. Z., Lentes K. U., Gocayne J., Fitzgerald M., Robinson D., Kerlavage A. R., Fraser C. M., Venter J. C. Cloning and sequence analysis of the human brain beta-adrenergic receptor. Evolutionary relationship to rodent and avian beta-receptors and porcine muscarinic receptors. FEBS Lett. 1987 Jan 26;211(2):200–206. doi: 10.1016/0014-5793(87)81436-9. [DOI] [PubMed] [Google Scholar]
- DiFrancesco D. Characterization of single pacemaker channels in cardiac sino-atrial node cells. Nature. 1986 Dec 4;324(6096):470–473. doi: 10.1038/324470a0. [DOI] [PubMed] [Google Scholar]
- Drazner M. H., Peppel K. C., Dyer S., Grant A. O., Koch W. J., Lefkowitz R. J. Potentiation of beta-adrenergic signaling by adenoviral-mediated gene transfer in adult rabbit ventricular myocytes. J Clin Invest. 1997 Jan 15;99(2):288–296. doi: 10.1172/JCI119157. [DOI] [PMC free article] [PubMed] [Google Scholar]
- FULMER R. I., CRAMER A. T., LIEBELT R. A., LIEBELT A. G. TRANSPLANTATION OF CARDIAC TISSUE INTO THE MOUSE EAR. Am J Anat. 1963 Sep;113:273–285. doi: 10.1002/aja.1001130206. [DOI] [PubMed] [Google Scholar]
- Field L. J. Atrial natriuretic factor-SV40 T antigen transgenes produce tumors and cardiac arrhythmias in mice. Science. 1988 Feb 26;239(4843):1029–1033. doi: 10.1126/science.2964082. [DOI] [PubMed] [Google Scholar]
- Gal D., Weir L., Leclerc G., Pickering J. G., Hogan J., Isner J. M. Direct myocardial transfection in two animal models. Evaluation of parameters affecting gene expression and percutaneous gene delivery. Lab Invest. 1993 Jan;68(1):18–25. [PubMed] [Google Scholar]
- Giordano F. J., Ping P., McKirnan M. D., Nozaki S., DeMaria A. N., Dillmann W. H., Mathieu-Costello O., Hammond H. K. Intracoronary gene transfer of fibroblast growth factor-5 increases blood flow and contractile function in an ischemic region of the heart. Nat Med. 1996 May;2(5):534–539. doi: 10.1038/nm0596-534. [DOI] [PubMed] [Google Scholar]
- Golf S., Løvstad R., Hansson V. Beta-adrenoceptor density and relative number of beta-adrenoceptor subtypes in biopsies from human right atrial, left ventricular, and right ventricular myocard. Cardiovasc Res. 1985 Oct;19(10):636–641. doi: 10.1093/cvr/19.10.636. [DOI] [PubMed] [Google Scholar]
- Gustafson T. A., Markham B. E., Bahl J. J., Morkin E. Thyroid hormone regulates expression of a transfected alpha-myosin heavy-chain fusion gene in fetal heart cells. Proc Natl Acad Sci U S A. 1987 May;84(10):3122–3126. doi: 10.1073/pnas.84.10.3122. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Guth B. D., Dietze T. I(f) current mediates beta-adrenergic enhancement of heart rate but not contractility in vivo. Basic Res Cardiol. 1995 May-Jun;90(3):192–202. doi: 10.1007/BF00805662. [DOI] [PubMed] [Google Scholar]
- Holmer S. R., Homcy C. J. G proteins in the heart. A redundant and diverse transmembrane signaling network. Circulation. 1991 Nov;84(5):1891–1902. doi: 10.1161/01.cir.84.5.1891. [DOI] [PubMed] [Google Scholar]
- Inglese J., Freedman N. J., Koch W. J., Lefkowitz R. J. Structure and mechanism of the G protein-coupled receptor kinases. J Biol Chem. 1993 Nov 15;268(32):23735–23738. [PubMed] [Google Scholar]
- Iwaki K., Sukhatme V. P., Shubeita H. E., Chien K. R. Alpha- and beta-adrenergic stimulation induces distinct patterns of immediate early gene expression in neonatal rat myocardial cells. fos/jun expression is associated with sarcomere assembly; Egr-1 induction is primarily an alpha 1-mediated response. J Biol Chem. 1990 Aug 15;265(23):13809–13817. [PubMed] [Google Scholar]
- Johns D. C., Nuss H. B., Chiamvimonvat N., Ramza B. M., Marban E., Lawrence J. H. Adenovirus-mediated expression of a voltage-gated potassium channel in vitro (rat cardiac myocytes) and in vivo (rat liver). A novel strategy for modifying excitability. J Clin Invest. 1995 Aug;96(2):1152–1158. doi: 10.1172/JCI118103. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kass-Eisler A., Falck-Pedersen E., Alvira M., Rivera J., Buttrick P. M., Wittenberg B. A., Cipriani L., Leinwand L. A. Quantitative determination of adenovirus-mediated gene delivery to rat cardiac myocytes in vitro and in vivo. Proc Natl Acad Sci U S A. 1993 Dec 15;90(24):11498–11502. doi: 10.1073/pnas.90.24.11498. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kitsis R. N., Buttrick P. M., McNally E. M., Kaplan M. L., Leinwand L. A. Hormonal modulation of a gene injected into rat heart in vivo. Proc Natl Acad Sci U S A. 1991 May 15;88(10):4138–4142. doi: 10.1073/pnas.88.10.4138. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kitsis R. N., Leinwand L. A. Discordance between gene regulation in vitro and in vivo. Gene Expr. 1992;2(4):313–318. [PMC free article] [PubMed] [Google Scholar]
- Kohout T. A., O'Brian J. J., Gaa S. T., Lederer W. J., Rogers T. B. Novel adenovirus component system that transfects cultured cardiac cells with high efficiency. Circ Res. 1996 Jun;78(6):971–977. doi: 10.1161/01.res.78.6.971. [DOI] [PubMed] [Google Scholar]
- Lee J., Laks H., Drinkwater D. C., Blitz A., Lam L., Shiraishi Y., Chang P., Drake T. A., Ardehali A. Cardiac gene transfer by intracoronary infusion of adenovirus vector-mediated reporter gene in the transplanted mouse heart. J Thorac Cardiovasc Surg. 1996 Jan;111(1):246–252. doi: 10.1016/S0022-5223(96)70422-1. [DOI] [PubMed] [Google Scholar]
- Lefkowitz R. J., Caron M. G. Adrenergic receptors. Models for the study of receptors coupled to guanine nucleotide regulatory proteins. J Biol Chem. 1988 Apr 15;263(11):4993–4996. [PubMed] [Google Scholar]
- Milano C. A., Allen L. F., Rockman H. A., Dolber P. C., McMinn T. R., Chien K. R., Johnson T. D., Bond R. A., Lefkowitz R. J. Enhanced myocardial function in transgenic mice overexpressing the beta 2-adrenergic receptor. Science. 1994 Apr 22;264(5158):582–586. doi: 10.1126/science.8160017. [DOI] [PubMed] [Google Scholar]
- Moxham C. P., George S. T., Graziano M. P., Brandwein H. J., Malbon C. C. Mammalian beta 1- and beta 2-adrenergic receptors. Immunological and structural comparisons. J Biol Chem. 1986 Nov 5;261(31):14562–14570. [PubMed] [Google Scholar]
- Pennock G. D., Milavetz J. J., Raya T. E., Bahl J. J., Goldman S., Morkin E. Identification of simple substituted phenols with thyromimetic activity: cardiac effects of 3,5-diiodo-4-hydroxyphenylpropionic acid. J Pharmacol Exp Ther. 1994 Jan;268(1):216–223. [PubMed] [Google Scholar]
- Rossi M. A. Chronic hemodynamic unloading regulates the morphologic development of newborn mouse hearts transplanted into the ear of isogeneic adult mice. Am J Pathol. 1992 Jul;141(1):183–191. [PMC free article] [PubMed] [Google Scholar]
- SELYE H., BAJUSZ E., GRASSO S., MENDELL P. Simple techniques for the surgical occlusion of coronary vessels in the rat. Angiology. 1960 Oct;11:398–407. doi: 10.1177/000331976001100505. [DOI] [PubMed] [Google Scholar]
- Saito K., Torda T., Potter W. Z., Saavedra J. M. Characterization of beta 1- and beta 2-adrenoceptor subtypes in the rat sinoatrial node and stellate ganglia by quantitative autoradiography. Neurosci Lett. 1989 Jan 2;96(1):35–41. doi: 10.1016/0304-3940(89)90239-5. [DOI] [PubMed] [Google Scholar]
- Savarese T. M., Fraser C. M. In vitro mutagenesis and the search for structure-function relationships among G protein-coupled receptors. Biochem J. 1992 Apr 1;283(Pt 1):1–19. doi: 10.1042/bj2830001. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sen A., Miller J. C., Reynolds R., Willerson J. T., Buja L. M., Chien K. R. Inhibition of the release of arachidonic acid prevents the development of sarcolemmal membrane defects in cultured rat myocardial cells during adenosine triphosphate depletion. J Clin Invest. 1988 Oct;82(4):1333–1338. doi: 10.1172/JCI113735. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wolff J. A., Malone R. W., Williams P., Chong W., Acsadi G., Jani A., Felgner P. L. Direct gene transfer into mouse muscle in vivo. Science. 1990 Mar 23;247(4949 Pt 1):1465–1468. doi: 10.1126/science.1690918. [DOI] [PubMed] [Google Scholar]