Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1998 Jan 15;101(2):390–397. doi: 10.1172/JCI1168

Cyclic AMP suppresses the inhibition of glycolysis by alternative oxidizable substrates in the heart.

C Depre 1, S Ponchaut 1, J Deprez 1, L Maisin 1, L Hue 1
PMCID: PMC508578  PMID: 9435311

Abstract

In normoxic conditions, myocardial glucose utilization is inhibited when alternative oxidizable substrates are available. In this work we show that this inhibition is relieved in the presence of cAMP, and we studied the mechanism of this effect. Working rat hearts were perfused with 5.5 mM glucose alone (controls) or together with 5 mM lactate, 5 mM beta-hydroxybutyrate, or 1 mM palmitate. The effects of 0.1 mM chlorophenylthio-cAMP (CPT-cAMP), a cAMP analogue, were studied in each group. Glucose uptake, flux through 6-phosphofructo-1-kinase, and pyruvate dehydrogenase activity were inhibited in hearts perfused with alternative substrates, and addition of CPT-cAMP completely relieved the inhibition. The mechanism by which CPT-cAMP induced a preferential utilization of glucose was related to an increased glucose uptake and glycolysis, and to an activation of phosphorylase, pyruvate dehydrogenase, and 6-phosphofructo-2-kinase, the enzyme responsible for the synthesis of fructose 2,6-bisphosphate, the well-known stimulator of 6-phosphofructo-1-kinase. In vitro phosphorylation of 6-phosphofructo-2-kinase by cAMP-dependent protein kinase increased the Vmax of the enzyme and decreased its sensitivity to the inhibitor citrate. Therefore, in hearts perfused with various oxidizable substrates, cAMP induces a preferential utilization of glucose by a concerted stimulation of glucose transport, glycolysis, glycogen breakdown, and glucose oxidation.

Full Text

The Full Text of this article is available as a PDF (217.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bontemps F., Hue L., Hers H. G. Phosphorylation of glucose in isolated rat hepatocytes. Sigmoidal kinetics explained by the activity of glucokinase alone. Biochem J. 1978 Aug 15;174(2):603–611. doi: 10.1042/bj1740603. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bristow M. R., Cubicciotti R., Ginsburg R., Stinson E. B., Johnson C. Histamine-mediated adenylate cyclase stimulation in human myocardium. Mol Pharmacol. 1982 May;21(3):671–679. [PubMed] [Google Scholar]
  3. Clark M. G., Patten G. S. Epinephrine activation of phosphofructokinase in perfused rat heart independent of changes in effector concentrations. J Biol Chem. 1981 Jan 10;256(1):27–30. [PubMed] [Google Scholar]
  4. Collins-Nakai R. L., Noseworthy D., Lopaschuk G. D. Epinephrine increases ATP production in hearts by preferentially increasing glucose metabolism. Am J Physiol. 1994 Nov;267(5 Pt 2):H1862–H1871. doi: 10.1152/ajpheart.1994.267.5.H1862. [DOI] [PubMed] [Google Scholar]
  5. Cramb G., Banks R., Rugg E. L., Aiton J. F. Actions of atrial natriuretic peptide (ANP) on cyclic nucleotide concentrations and phosphatidylinositol turnover in ventricular myocytes. Biochem Biophys Res Commun. 1987 Nov 13;148(3):962–970. doi: 10.1016/s0006-291x(87)80226-7. [DOI] [PubMed] [Google Scholar]
  6. Depre C., Hue L. Inhibition of glycogenolysis by a glucose analogue in the working rat heart. J Mol Cell Cardiol. 1997 Aug;29(8):2253–2259. doi: 10.1006/jmcc.1997.0464. [DOI] [PubMed] [Google Scholar]
  7. Depre C., Rider M. H., Veitch K., Hue L. Role of fructose 2,6-bisphosphate in the control of heart glycolysis. J Biol Chem. 1993 Jun 25;268(18):13274–13279. [PubMed] [Google Scholar]
  8. Deprez J., Vertommen D., Alessi D. R., Hue L., Rider M. H. Phosphorylation and activation of heart 6-phosphofructo-2-kinase by protein kinase B and other protein kinases of the insulin signaling cascades. J Biol Chem. 1997 Jul 11;272(28):17269–17275. doi: 10.1074/jbc.272.28.17269. [DOI] [PubMed] [Google Scholar]
  9. Depré C., Hue L. Cyclic GMP in the perfused rat heart. Effect of ischaemia, anoxia and nitric oxide synthase inhibitor. FEBS Lett. 1994 May 30;345(2-3):241–245. doi: 10.1016/0014-5793(94)00459-5. [DOI] [PubMed] [Google Scholar]
  10. Depré C., Veitch K., Hue L. Role of fructose 2,6-bisphosphate in the control of glycolysis. Stimulation of glycogen synthesis by lactate in the isolated working rat heart. Acta Cardiol. 1993;48(1):147–164. [PubMed] [Google Scholar]
  11. Dobson J. G., Jr, Ross J., Jr, Mayer S. E. The role of cyclic adenosine 3', 5'-monophosphate and calcium in the regulation of contractility and glycogen phosphorylase activity in guinea pig papillary muscle. Circ Res. 1976 Sep;39(3):388–395. doi: 10.1161/01.res.39.3.388. [DOI] [PubMed] [Google Scholar]
  12. Doperé F., Vanstapel F., Stalmans W. Glycogen-synthase phosphatase activity in rat liver. Two protein components and their requirement for the activation of different types of substrate. Eur J Biochem. 1980 Feb;104(1):137–146. doi: 10.1111/j.1432-1033.1980.tb04409.x. [DOI] [PubMed] [Google Scholar]
  13. Fischer Y., Thomas J., Holman G. D., Rose H., Kammermeier H. Contraction-independent effects of catecholamines on glucose transport in isolated rat cardiomyocytes. Am J Physiol. 1996 Apr;270(4 Pt 1):C1204–C1210. doi: 10.1152/ajpcell.1996.270.4.C1204. [DOI] [PubMed] [Google Scholar]
  14. GARLAND P. B., RANDLE P. J., NEWSHOLME E. A. CITRATE AS AN INTERMEDIARY IN THE INHIBITION OF PHOSPHOFRUCTOKINASE IN RAT HEART MUSCLE BY FATTY ACIDS, KETONE BODIES, PYRUVATE, DIABETES, AND STARVATION. Nature. 1963 Oct 12;200:169–170. doi: 10.1038/200169a0. [DOI] [PubMed] [Google Scholar]
  15. Hiraoka T., DeBuysere M., Olson M. S. Studies of the effects of beta-adrenergic agonists on the regulation of pyruvate dehydrogenase in the perfused rat heart. J Biol Chem. 1980 Aug 25;255(16):7604–7609. [PubMed] [Google Scholar]
  16. Hue L., Bontemps F., Hers H. The effects of glucose and of potassium ions on the interconversion of the two forms of glycogen phosphorylase and of glycogen synthetase in isolated rat liver preparations. Biochem J. 1975 Oct;152(1):105–114. doi: 10.1042/bj1520105. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Hue L., Hers H. G. On the use of (3H, 14C)labelled glucose in the study of the so-called "futile cycles" in liver and muscle. Biochem Biophys Res Commun. 1974 Jun 4;58(3):532–539. doi: 10.1016/s0006-291x(74)80453-5. [DOI] [PubMed] [Google Scholar]
  18. Hue L., Maisin L., Rider M. H. Palmitate inhibits liver glycolysis. Involvement of fructose 2,6-bisphosphate in the glucose/fatty acid cycle. Biochem J. 1988 Apr 15;251(2):541–545. doi: 10.1042/bj2510541. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Hue L., Rider M. H. Role of fructose 2,6-bisphosphate in the control of glycolysis in mammalian tissues. Biochem J. 1987 Jul 15;245(2):313–324. doi: 10.1042/bj2450313. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Kerbey A. L., Randle P. J., Cooper R. H., Whitehouse S., Pask H. T., Denton R. M. Regulation of pyruvate dehydrogenase in rat heart. Mechanism of regulation of proportions of dephosphorylated and phosphorylated enzyme by oxidation of fatty acids and ketone bodies and of effects of diabetes: role of coenzyme A, acetyl-coenzyme A and reduced and oxidized nicotinamide-adenine dinucleotide. Biochem J. 1976 Feb 15;154(2):327–348. doi: 10.1042/bj1540327. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Kitajima S., Sakakibara R., Uyeda K. Significance of phosphorylation of phosphofructokinase. J Biol Chem. 1983 Nov 10;258(21):13292–13298. [PubMed] [Google Scholar]
  22. Kitamura K., Kangawa K., Matsuo H., Uyeda K. Phosphorylation of myocardial fructose-6-phosphate,2-kinase: fructose-2,6-bisphosphatase by cAMP-dependent protein kinase and protein kinase C. Activation by phosphorylation and amino acid sequences of the phosphorylation sites. J Biol Chem. 1988 Nov 15;263(32):16796–16801. [PubMed] [Google Scholar]
  23. Lopaschuk G. D., Michalak M., Wandler E. L., Lerner R. W., Piscione T. D., Coceani F., Olley P. M. Prostaglandin E receptors in cardiac sarcolemma. Identification and coupling to adenylate cyclase. Circ Res. 1989 Sep;65(3):538–545. doi: 10.1161/01.res.65.3.538. [DOI] [PubMed] [Google Scholar]
  24. MORGAN H. E., PARMEGGIANI A. REGULATION OF GLYCOGENOLYSIS IN MUSCLE. II. CONTROL OF GLYCOGEN PHOSPHORYLASE REACTION IN ISOLATED PERFUSED HEART. J Biol Chem. 1964 Aug;239:2435–2439. [PubMed] [Google Scholar]
  25. McCormack J. G., Denton R. M. Role of calcium ions in the regulation of intramitochondrial metabolism. Properties of the Ca2+-sensitive dehydrogenases within intact uncoupled mitochondria from the white and brown adipose tissue of the rat. Biochem J. 1980 Jul 15;190(1):95–105. doi: 10.1042/bj1900095. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. McCormack J. G., Edgell N. J., Denton R. M. Studies on the interactions of Ca2+ and pyruvate in the regulation of rat heart pyruvate dehydrogenase activity. Effects of starvation and diabetes. Biochem J. 1982 Feb 15;202(2):419–427. doi: 10.1042/bj2020419. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Neely J. R., Denton R. M., England P. J., Randle P. J. The effects of increased heart work on the tricarboxylate cycle and its interactions with glycolysis in the perfused rat heart. Biochem J. 1972 Jun;128(1):147–159. doi: 10.1042/bj1280147. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Neer E. J., Clapham D. E. Roles of G protein subunits in transmembrane signalling. Nature. 1988 May 12;333(6169):129–134. doi: 10.1038/333129a0. [DOI] [PubMed] [Google Scholar]
  29. Pogson C. I., Randle P. J. The control of rat-heart phosphofructokinase by citrate and other regulators. Biochem J. 1966 Sep;100(3):683–693. doi: 10.1042/bj1000683. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. RANDLE P. J., GARLAND P. B., HALES C. N., NEWSHOLME E. A. The glucose fatty-acid cycle. Its role in insulin sensitivity and the metabolic disturbances of diabetes mellitus. Lancet. 1963 Apr 13;1(7285):785–789. doi: 10.1016/s0140-6736(63)91500-9. [DOI] [PubMed] [Google Scholar]
  31. Rattigan S., Appleby G. J., Clark M. G. Insulin-like action of catecholamines and Ca2+ to stimulate glucose transport and GLUT4 translocation in perfused rat heart. Biochim Biophys Acta. 1991 Sep 3;1094(2):217–223. doi: 10.1016/0167-4889(91)90012-m. [DOI] [PubMed] [Google Scholar]
  32. Rider M. H., van Damme J., Vertommen D., Michel A., Vandekerckhove J., Hue L. Evidence for new phosphorylation sites for protein kinase C and cyclic AMP-dependent protein kinase in bovine heart 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase. FEBS Lett. 1992 Sep 28;310(2):139–142. doi: 10.1016/0014-5793(92)81315-d. [DOI] [PubMed] [Google Scholar]
  33. Söling H. D., Brand I. A. Covalent modification of phosphofructokinase by phosphorylation--dephosphorylation. Curr Top Cell Regul. 1981;20:107–138. [PubMed] [Google Scholar]
  34. Taegtmeyer H., Hems R., Krebs H. A. Utilization of energy-providing substrates in the isolated working rat heart. Biochem J. 1980 Mar 15;186(3):701–711. doi: 10.1042/bj1860701. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. WILLIAMSON J. R. Effects of insulin and diet on the metabolism of L-lactate and glucose by the perfused rat heart. Biochem J. 1962 May;83:377–383. doi: 10.1042/bj0830377. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. WILLIAMSON J. R. METABOLIC EFFECTS OF EPINEPHRINE IN THE ISOLATED, PERFUSED RAT HEART. I. DISSOCIATION OF THE GLYCOGENOLYTIC FROM THE METABOLIC STIMULATORY EFFECT. J Biol Chem. 1964 Sep;239:2721–2729. [PubMed] [Google Scholar]
  37. Wheeler T. J., Fell R. D., Hauck M. A. Translocation of two glucose transporters in heart: effects of rotenone, uncouplers, workload, palmitate, insulin and anoxia. Biochim Biophys Acta. 1994 Dec 30;1196(2):191–200. doi: 10.1016/0005-2736(94)00211-8. [DOI] [PubMed] [Google Scholar]
  38. Wiesner R. J., Kreutzer U., Rösen P., Grieshaber M. K. Subcellular distribution of malate-aspartate cycle intermediates during normoxia and anoxia in the heart. Biochim Biophys Acta. 1988 Oct 26;936(1):114–123. doi: 10.1016/0005-2728(88)90258-7. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES