Abstract
Active reabsorption of urea appears in the initial IMCD (IMCD1) of rats fed a low-protein diet. To determine whether active urea transport also occurs in the deepest IMCD subsegment, the IMCD3, we isolated IMCDs from the base (IMCD1), middle (IMCD2), and tip (IMCD3) regions of the inner medulla from rats fed a normal protein diet and water ad libitum. IMCDs were perfused with identical perfusate and bath solutions. A significant rate of net urea secretion was present only in IMCD3s. Replacing perfusate Na+ with NMDG+ reversibly inhibited net urea secretion but replacing bath Na+ with NMDG+ or perfusate Cl- with gluconate- had no effect. Net urea secretion was significantly inhibited by: (a) 250 microM phloretin (perfusate); (b) 100 nM triamterene (perfusate); (c) 1 mM ouabain (bath); and (d) cooling the tubule to 23 degrees C. Net urea secretion was significantly stimulated by 10 nM vasopressin (bath). Next, we perfused IMCD3s from water diuretic rats (given food ad libitum) and found a significant, fivefold increase in net urea secretion. In summary, we identified a secondary active, secretory urea transport process in IMCD3s of normal rats which is upregulated in water diuretic rats. This new urea transporter may be a sodium- urea antiporter.
Full Text
The Full Text of this article is available as a PDF (175.8 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Atherton J. C., Green R., Thomas S. Influence of lysine-vasopressin dosage on the time course of changes in renal tissue and urinary composition in the conscious rat. J Physiol. 1971 Mar;213(2):291–309. doi: 10.1113/jphysiol.1971.sp009383. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Atherton J. C., Hai M. A., Thomas S. The time course of changes in renal tissue composition duruig water diuresis in the rat. J Physiol. 1968 Jul;197(2):429–443. doi: 10.1113/jphysiol.1968.sp008568. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Beyer K. H., Jr, Gelarden R. T. Active transport of urea by mammalian kidney. Proc Natl Acad Sci U S A. 1988 Jun;85(11):4030–4031. doi: 10.1073/pnas.85.11.4030. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Beyer K. H., Jr, Gelarden R. T., Vary J. E., Brown L. E., Vesell E. S. Novel multivalent effects of pyrazinoylguanidine in patients with azotemia. Clin Pharmacol Ther. 1990 May;47(5):629–638. doi: 10.1038/clpt.1990.84. [DOI] [PubMed] [Google Scholar]
- Beyer K. H., Jr, Gelarden R. T., Vesell E. S. Inhibition of urea transport across renal tubules by pyrazinoylguanidine and analogs. Pharmacology. 1992;44(3):124–138. doi: 10.1159/000138905. [DOI] [PubMed] [Google Scholar]
- Bulger R. E. Composition of renal medullary tissue. Kidney Int. 1987 Feb;31(2):556–561. doi: 10.1038/ki.1987.35. [DOI] [PubMed] [Google Scholar]
- Chou C. L., Knepper M. A. Inhibition of urea transport in inner medullary collecting duct by phloretin and urea analogues. Am J Physiol. 1989 Sep;257(3 Pt 2):F359–F365. doi: 10.1152/ajprenal.1989.257.3.F359. [DOI] [PubMed] [Google Scholar]
- Clapp W. L., Madsen K. M., Verlander J. W., Tisher C. C. Morphologic heterogeneity along the rat inner medullary collecting duct. Lab Invest. 1989 Feb;60(2):219–230. [PubMed] [Google Scholar]
- Cupples W. A., Sonnenberg H. Load dependency of sodium chloride reabsorption by medullary collecting duct in rat. Am J Physiol. 1987 Oct;253(4 Pt 2):F642–F648. doi: 10.1152/ajprenal.1987.253.4.F642. [DOI] [PubMed] [Google Scholar]
- Dytko G., Smith P. L., Kinter L. B. Urea transport in toad skin (Bufo marinus) J Pharmacol Exp Ther. 1993 Oct;267(1):364–370. [PubMed] [Google Scholar]
- ElBerry H. M., Majumdar M. L., Cunningham T. S., Sumrada R. A., Cooper T. G. Regulation of the urea active transporter gene (DUR3) in Saccharomyces cerevisiae. J Bacteriol. 1993 Aug;175(15):4688–4698. doi: 10.1128/jb.175.15.4688-4698.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- FORSTER R. P. Active cellular transport of urea by frog renal tubules. Am J Physiol. 1954 Nov;179(2):372–377. doi: 10.1152/ajplegacy.1954.179.2.372. [DOI] [PubMed] [Google Scholar]
- Gillin A. G., Sands J. M. Characteristics of osmolarity-stimulated urea transport in rat IMCD. Am J Physiol. 1992 Jun;262(6 Pt 2):F1061–F1067. doi: 10.1152/ajprenal.1992.262.6.F1061. [DOI] [PubMed] [Google Scholar]
- Isozaki T., Gillin A. G., Swanson C. E., Sands J. M. Protein restriction sequentially induces new urea transport processes in rat initial IMCD. Am J Physiol. 1994 May;266(5 Pt 2):F756–F761. doi: 10.1152/ajprenal.1994.266.5.F756. [DOI] [PubMed] [Google Scholar]
- Isozaki T., Lea J. P., Tumlin J. A., Sands J. M. Sodium-dependent net urea transport in rat initial inner medullary collecting ducts. J Clin Invest. 1994 Oct;94(4):1513–1517. doi: 10.1172/JCI117491. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Isozaki T., Verlander J. W., Sands J. M. Low protein diet alters urea transport and cell structure in rat initial inner medullary collecting duct. J Clin Invest. 1993 Nov;92(5):2448–2457. doi: 10.1172/JCI116852. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Katz U., Garcia-Romeu F., Masoni A., Isaia J. Active transport of urea across the skin of the euryhaline toad, Bufo viridis. Pflugers Arch. 1981 Jun;390(3):299–300. doi: 10.1007/BF00658281. [DOI] [PubMed] [Google Scholar]
- Kawamura S., Kokko J. P. Urea secretion by the straight segment of the proximal tubule. J Clin Invest. 1976 Sep;58(3):604–612. doi: 10.1172/JCI108507. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Knepper M. A. Urea transport in nephron segments from medullary rays of rabbits. Am J Physiol. 1983 Jun;244(6):F622–F627. doi: 10.1152/ajprenal.1983.244.6.F622. [DOI] [PubMed] [Google Scholar]
- Kudo L. H., van Baak A. A., Rocha A. S. Effect of vasopressin on sodium transport across inner medullary collecting duct. Am J Physiol. 1990 May;258(5 Pt 2):F1438–F1447. doi: 10.1152/ajprenal.1990.258.5.F1438. [DOI] [PubMed] [Google Scholar]
- Lacoste I., Dunel-Erb S., Harvey B. J., Laurent P., Ehrenfeld J. Active urea transport independent of H+ and Na+ transport in frog skin epithelium. Am J Physiol. 1991 Oct;261(4 Pt 2):R898–R906. doi: 10.1152/ajpregu.1991.261.4.R898. [DOI] [PubMed] [Google Scholar]
- Madsen K. M., Clapp W. L., Verlander J. W. Structure and function of the inner medullary collecting duct. Kidney Int. 1988 Oct;34(4):441–454. doi: 10.1038/ki.1988.201. [DOI] [PubMed] [Google Scholar]
- Nielsen S., Terris J., Smith C. P., Hediger M. A., Ecelbarger C. A., Knepper M. A. Cellular and subcellular localization of the vasopressin- regulated urea transporter in rat kidney. Proc Natl Acad Sci U S A. 1996 May 28;93(11):5495–5500. doi: 10.1073/pnas.93.11.5495. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rapoport J., Abuful A., Chaimovitz C., Noeh Z., Hays R. M. Active urea transport by the skin of Bufo viridis: amiloride- and phloretin-sensitive transport sites. Am J Physiol. 1988 Sep;255(3 Pt 2):F429–F433. doi: 10.1152/ajprenal.1988.255.3.F429. [DOI] [PubMed] [Google Scholar]
- SCHMIDT-NIELSEN B., RABINOWITZ L. METHYLUREA AND ACETAMIDE: ACTIVE REABSORPTION BY ELASMOBRANCH RENAL TUBULES. Science. 1964 Dec 18;146(3651):1587–1588. doi: 10.1126/science.146.3651.1587. [DOI] [PubMed] [Google Scholar]
- SCHMIDT-NIELSEN B., SHRAUGER C. R. HANDLING OF UREA AND RELATED COMPOUNDS BY THE RENAL TUBULES OF THE FROG. Am J Physiol. 1963 Sep;205:483–488. doi: 10.1152/ajplegacy.1963.205.3.483. [DOI] [PubMed] [Google Scholar]
- Sands J. M., Knepper M. A., Spring K. R. Na-K-Cl cotransport in apical membrane of rabbit renal papillary surface epithelium. Am J Physiol. 1986 Sep;251(3 Pt 2):F475–F484. doi: 10.1152/ajprenal.1986.251.3.F475. [DOI] [PubMed] [Google Scholar]
- Sands J. M., Knepper M. A. Urea permeability of mammalian inner medullary collecting duct system and papillary surface epithelium. J Clin Invest. 1987 Jan;79(1):138–147. doi: 10.1172/JCI112774. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sands J. M., Martial S., Isozaki T. Active urea transport in the rat inner medullary collecting duct: functional characterization and initial expression cloning. Kidney Int. 1996 Jun;49(6):1611–1614. doi: 10.1038/ki.1996.234. [DOI] [PubMed] [Google Scholar]
- Sands J. M., Nonoguchi H., Knepper M. A. Hormone effects on NaCl permeability of rat inner medullary collecting duct. Am J Physiol. 1988 Sep;255(3 Pt 2):F421–F428. doi: 10.1152/ajprenal.1988.255.3.F421. [DOI] [PubMed] [Google Scholar]
- Sands J. M., Nonoguchi H., Knepper M. A. Vasopressin effects on urea and H2O transport in inner medullary collecting duct subsegments. Am J Physiol. 1987 Nov;253(5 Pt 2):F823–F832. doi: 10.1152/ajprenal.1987.253.5.F823. [DOI] [PubMed] [Google Scholar]
- Sands J. M., Timmer R. T., Gunn R. B. Urea transporters in kidney and erythrocytes. Am J Physiol. 1997 Sep;273(3 Pt 2):F321–F339. doi: 10.1152/ajprenal.1997.273.3.F321. [DOI] [PubMed] [Google Scholar]
- Schlanger L. E., Kleyman T. R., Ling B. N. K(+)-sparing diuretic actions of trimethoprim: inhibition of Na+ channels in A6 distal nephron cells. Kidney Int. 1994 Apr;45(4):1070–1076. doi: 10.1038/ki.1994.143. [DOI] [PubMed] [Google Scholar]
- Schmidt-Nielsen B., Truniger B., Rabinowitz L. Sodium-linked urea transport by the renal tubule of the spiny dogfish Squalus acanthias. Comp Biochem Physiol A Comp Physiol. 1972 May 1;42(1):13–25. doi: 10.1016/0300-9629(72)90360-x. [DOI] [PubMed] [Google Scholar]
- Shayakul C., Knepper M. A., Smith C. P., DiGiovanni S. R., Hediger M. A. Segmental localization of urea transporter mRNAs in rat kidney. Am J Physiol. 1997 May;272(5 Pt 2):F654–F660. doi: 10.1152/ajprenal.1997.272.5.F654. [DOI] [PubMed] [Google Scholar]
- Shayakul C., Steel A., Hediger M. A. Molecular cloning and characterization of the vasopressin-regulated urea transporter of rat kidney collecting ducts. J Clin Invest. 1996 Dec 1;98(11):2580–2587. doi: 10.1172/JCI119077. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sonnenberg H. Medullary collecting-duct function in antidiuretic and in salt- or water-diuretic rats. Am J Physiol. 1974 Mar;226(3):501–506. doi: 10.1152/ajplegacy.1974.226.3.501. [DOI] [PubMed] [Google Scholar]
- Terada Y., Knepper M. A. Na+-K+-ATPase activities in renal tubule segments of rat inner medulla. Am J Physiol. 1989 Feb;256(2 Pt 2):F218–F223. doi: 10.1152/ajprenal.1989.256.2.F218. [DOI] [PubMed] [Google Scholar]
- Ullrich K. J., Papavassiliou F. Sodium reabsorption in the papillary collecting duct of rats. Effect of adrenalectomy, low Na+ diet, acetazolamide, HCO-3-free solutions and of amiloride. Pflugers Arch. 1979 Feb 14;379(1):49–52. doi: 10.1007/BF00622904. [DOI] [PubMed] [Google Scholar]
- Ussing H. H., Johansen B. Anomalous transport of sucrose and urea in toad skin. Nephron. 1969;6(3):317–328. doi: 10.1159/000179736. [DOI] [PubMed] [Google Scholar]
- Wilson D. R., Sonnenberg H. Urea secretion in medullary collecting duct of the rat kidney during water and mannitol diuresis. Am J Physiol. 1981 Mar;240(3):F165–F171. doi: 10.1152/ajprenal.1981.240.3.F165. [DOI] [PubMed] [Google Scholar]
- Yancey P. H., Burg M. B. Distribution of major organic osmolytes in rabbit kidneys in diuresis and antidiuresis. Am J Physiol. 1989 Oct;257(4 Pt 2):F602–F607. doi: 10.1152/ajprenal.1989.257.4.F602. [DOI] [PubMed] [Google Scholar]
- Zeidel M. L. Hormonal regulation of inner medullary collecting duct sodium transport. Am J Physiol. 1993 Aug;265(2 Pt 2):F159–F173. doi: 10.1152/ajprenal.1993.265.2.F159. [DOI] [PubMed] [Google Scholar]
