Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1998 Jan 15;101(2):487–496. doi: 10.1172/JCI639

Polyvariant mutant cystic fibrosis transmembrane conductance regulator genes. The polymorphic (Tg)m locus explains the partial penetrance of the T5 polymorphism as a disease mutation.

H Cuppens 1, W Lin 1, M Jaspers 1, B Costes 1, H Teng 1, A Vankeerberghen 1, M Jorissen 1, G Droogmans 1, I Reynaert 1, M Goossens 1, B Nilius 1, J J Cassiman 1
PMCID: PMC508589  PMID: 9435322

Abstract

In congenital bilateral absence of the vas deferens patients, the T5 allele at the polymorphic Tn locus in the CFTR (cystic fibrosis transmembrane conductance regulator) gene is a frequent disease mutation with incomplete penetrance. This T5 allele will result in a high proportion of CFTR transcripts that lack exon 9, whose translation products will not contribute to apical chloride channel activity. Besides the polymorphic Tn locus, more than 120 polymorphisms have been described in the CFTR gene. We hypothesized that the combination of particular alleles at several polymorphic loci might result in less functional or even insufficient CFTR protein. Analysis of three polymorphic loci with frequent alleles in the general population showed that, in addition to the known effect of the Tn locus, the quantity and quality of CFTR transcripts and/or proteins was affected by two other polymorphic loci: (TG)m and M470V. On a T7 background, the (TG)11 allele gave a 2.8-fold increase in the proportion of CFTR transcripts that lacked exon 9, and (TG)12 gave a sixfold increase, compared with the (TG)10 allele. T5 CFTR genes derived from patients were found to carry a high number of TG repeats, while T5 CFTR genes derived from healthy CF fathers harbored a low number of TG repeats. Moreover, it was found that M470 CFTR proteins matured more slowly, and that they had a 1.7-fold increased intrinsic chloride channel activity compared with V470 CFTR proteins, suggesting that the M470V locus might also play a role in the partial penetrance of T5 as a disease mutation. Such polyvariant mutant genes could explain why apparently normal CFTR genes cause disease. Moreover, they might be responsible for variation in the phenotypic expression of CFTR mutations, and be of relevance in other genetic diseases.

Full Text

The Full Text of this article is available as a PDF (264.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson M. P., Gregory R. J., Thompson S., Souza D. W., Paul S., Mulligan R. C., Smith A. E., Welsh M. J. Demonstration that CFTR is a chloride channel by alteration of its anion selectivity. Science. 1991 Jul 12;253(5016):202–205. doi: 10.1126/science.1712984. [DOI] [PubMed] [Google Scholar]
  2. Bear C. E., Li C. H., Kartner N., Bridges R. J., Jensen T. J., Ramjeesingh M., Riordan J. R. Purification and functional reconstitution of the cystic fibrosis transmembrane conductance regulator (CFTR). Cell. 1992 Feb 21;68(4):809–818. doi: 10.1016/0092-8674(92)90155-6. [DOI] [PubMed] [Google Scholar]
  3. Brezillon S., Dupuit F., Hinnrasky J., Marchand V., Kälin N., Tümmler B., Puchelle E. Decreased expression of the CFTR protein in remodeled human nasal epithelium from non-cystic fibrosis patients. Lab Invest. 1995 Feb;72(2):191–200. [PubMed] [Google Scholar]
  4. Chee M., Yang R., Hubbell E., Berno A., Huang X. C., Stern D., Winkler J., Lockhart D. J., Morris M. S., Fodor S. P. Accessing genetic information with high-density DNA arrays. Science. 1996 Oct 25;274(5287):610–614. doi: 10.1126/science.274.5287.610. [DOI] [PubMed] [Google Scholar]
  5. Chillón M., Casals T., Mercier B., Bassas L., Lissens W., Silber S., Romey M. C., Ruiz-Romero J., Verlingue C., Claustres M. Mutations in the cystic fibrosis gene in patients with congenital absence of the vas deferens. N Engl J Med. 1995 Jun 1;332(22):1475–1480. doi: 10.1056/NEJM199506013322204. [DOI] [PubMed] [Google Scholar]
  6. Chu C. S., Trapnell B. C., Curristin S., Cutting G. R., Crystal R. G. Genetic basis of variable exon 9 skipping in cystic fibrosis transmembrane conductance regulator mRNA. Nat Genet. 1993 Feb;3(2):151–156. doi: 10.1038/ng0293-151. [DOI] [PubMed] [Google Scholar]
  7. Chu C. S., Trapnell B. C., Murtagh J. J., Jr, Moss J., Dalemans W., Jallat S., Mercenier A., Pavirani A., Lecocq J. P., Cutting G. R. Variable deletion of exon 9 coding sequences in cystic fibrosis transmembrane conductance regulator gene mRNA transcripts in normal bronchial epithelium. EMBO J. 1991 Jun;10(6):1355–1363. doi: 10.1002/j.1460-2075.1991.tb07655.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Claustres M., Laussel M., Desgeorges M., Giansily M., Culard J. F., Razakatsara G., Demaille J. Analysis of the 27 exons and flanking regions of the cystic fibrosis gene: 40 different mutations account for 91.2% of the mutant alleles in southern France. Hum Mol Genet. 1993 Aug;2(8):1209–1213. doi: 10.1093/hmg/2.8.1209. [DOI] [PubMed] [Google Scholar]
  9. Corder E. H., Saunders A. M., Strittmatter W. J., Schmechel D. E., Gaskell P. C., Small G. W., Roses A. D., Haines J. L., Pericak-Vance M. A. Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer's disease in late onset families. Science. 1993 Aug 13;261(5123):921–923. doi: 10.1126/science.8346443. [DOI] [PubMed] [Google Scholar]
  10. Costes B., Girodon E., Ghanem N., Flori E., Jardin A., Soufir J. C., Goossens M. Frequent occurrence of the CFTR intron 8 (TG)n 5T allele in men with congenital bilateral absence of the vas deferens. Eur J Hum Genet. 1995;3(5):285–293. doi: 10.1159/000472312. [DOI] [PubMed] [Google Scholar]
  11. Cuppens H., Marynen P., De Boeck C., Cassiman J. J. Detection of 98.5% of the mutations in 200 Belgian cystic fibrosis alleles by reverse dot-blot and sequencing of the complete coding region and exon/intron junctions of the CFTR gene. Genomics. 1993 Dec;18(3):693–697. doi: 10.1016/s0888-7543(05)80376-3. [DOI] [PubMed] [Google Scholar]
  12. Cuppens H., Teng H., Raeymaekers P., De Boeck C., Cassiman J. J. CFTR haplotype backgrounds on normal and mutant CFTR genes. Hum Mol Genet. 1994 Apr;3(4):607–614. doi: 10.1093/hmg/3.4.607. [DOI] [PubMed] [Google Scholar]
  13. Davignon J., Gregg R. E., Sing C. F. Apolipoprotein E polymorphism and atherosclerosis. Arteriosclerosis. 1988 Jan-Feb;8(1):1–21. doi: 10.1161/01.atv.8.1.1. [DOI] [PubMed] [Google Scholar]
  14. Delaney S. J., Rich D. P., Thomson S. A., Hargrave M. R., Lovelock P. K., Welsh M. J., Wainwright B. J. Cystic fibrosis transmembrane conductance regulator splice variants are not conserved and fail to produce chloride channels. Nat Genet. 1993 Aug;4(4):426–431. doi: 10.1038/ng0893-426. [DOI] [PubMed] [Google Scholar]
  15. Dietz H. C., Valle D., Francomano C. A., Kendzior R. J., Jr, Pyeritz R. E., Cutting G. R. The skipping of constitutive exons in vivo induced by nonsense mutations. Science. 1993 Jan 29;259(5095):680–683. doi: 10.1126/science.8430317. [DOI] [PubMed] [Google Scholar]
  16. Droogmans G., Nilius B. Kinetic properties of the cardiac T-type calcium channel in the guinea-pig. J Physiol. 1989 Dec;419:627–650. doi: 10.1113/jphysiol.1989.sp017890. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Drumm M. L., Pope H. A., Cliff W. H., Rommens J. M., Marvin S. A., Tsui L. C., Collins F. S., Frizzell R. A., Wilson J. M. Correction of the cystic fibrosis defect in vitro by retrovirus-mediated gene transfer. Cell. 1990 Sep 21;62(6):1227–1233. doi: 10.1016/0092-8674(90)90398-x. [DOI] [PubMed] [Google Scholar]
  18. Dumur V., Gervais R., Rigot J. M., Lafitte J. J., Manouvrier S., Biserte J., Mazeman E., Roussel P. Abnormal distribution of CF delta F508 allele in azoospermic men with congenital aplasia of epididymis and vas deferens. Lancet. 1990 Aug 25;336(8713):512–512. doi: 10.1016/0140-6736(90)92066-q. [DOI] [PubMed] [Google Scholar]
  19. Fulmer S. B., Schwiebert E. M., Morales M. M., Guggino W. B., Cutting G. R. Two cystic fibrosis transmembrane conductance regulator mutations have different effects on both pulmonary phenotype and regulation of outwardly rectified chloride currents. Proc Natl Acad Sci U S A. 1995 Jul 18;92(15):6832–6836. doi: 10.1073/pnas.92.15.6832. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Gallet X., Benhabiles N., Lewin M., Brasseur R., Thomas-Soumarmon A. Prediction of the antigenic sites of the cystic fibrosis transmembrane conductance regulator protein by molecular modelling. Protein Eng. 1995 Aug;8(8):829–834. doi: 10.1093/protein/8.8.829. [DOI] [PubMed] [Google Scholar]
  21. Goldfarb L. G., Petersen R. B., Tabaton M., Brown P., LeBlanc A. C., Montagna P., Cortelli P., Julien J., Vital C., Pendelbury W. W. Fatal familial insomnia and familial Creutzfeldt-Jakob disease: disease phenotype determined by a DNA polymorphism. Science. 1992 Oct 30;258(5083):806–808. doi: 10.1126/science.1439789. [DOI] [PubMed] [Google Scholar]
  22. Gregory R. J., Cheng S. H., Rich D. P., Marshall J., Paul S., Hehir K., Ostedgaard L., Klinger K. W., Welsh M. J., Smith A. E. Expression and characterization of the cystic fibrosis transmembrane conductance regulator. Nature. 1990 Sep 27;347(6291):382–386. doi: 10.1038/347382a0. [DOI] [PubMed] [Google Scholar]
  23. Highsmith W. E., Burch L. H., Zhou Z., Olsen J. C., Boat T. E., Spock A., Gorvoy J. D., Quittel L., Friedman K. J., Silverman L. M. A novel mutation in the cystic fibrosis gene in patients with pulmonary disease but normal sweat chloride concentrations. N Engl J Med. 1994 Oct 13;331(15):974–980. doi: 10.1056/NEJM199410133311503. [DOI] [PubMed] [Google Scholar]
  24. Jaspers M., de Meirsman C., Schollen E., Vekemans S., Cassiman J. J. Stable expression of VLA-4 and increased maturation of the beta 1-integrin precursor after transfection of CHO cells with alpha 4m cDNA. FEBS Lett. 1994 Oct 24;353(3):239–242. doi: 10.1016/0014-5793(94)01054-4. [DOI] [PubMed] [Google Scholar]
  25. Johnson L. G., Olsen J. C., Sarkadi B., Moore K. L., Swanstrom R., Boucher R. C. Efficiency of gene transfer for restoration of normal airway epithelial function in cystic fibrosis. Nat Genet. 1992 Sep;2(1):21–25. doi: 10.1038/ng0992-21. [DOI] [PubMed] [Google Scholar]
  26. Jorissen M., Van der Schueren B., Van den Berghe H., Cassiman J. J. The preservation and regeneration of cilia on human nasal epithelial cells cultured in vitro. Arch Otorhinolaryngol. 1989;246(5):308–314. doi: 10.1007/BF00463582. [DOI] [PubMed] [Google Scholar]
  27. Kamboh M. I., Sanghera D. K., Ferrell R. E., DeKosky S. T. APOE*4-associated Alzheimer's disease risk is modified by alpha 1-antichymotrypsin polymorphism. Nat Genet. 1995 Aug;10(4):486–488. doi: 10.1038/ng0895-486. [DOI] [PubMed] [Google Scholar]
  28. Kerem B., Rommens J. M., Buchanan J. A., Markiewicz D., Cox T. K., Chakravarti A., Buchwald M., Tsui L. C. Identification of the cystic fibrosis gene: genetic analysis. Science. 1989 Sep 8;245(4922):1073–1080. doi: 10.1126/science.2570460. [DOI] [PubMed] [Google Scholar]
  29. Kiesewetter S., Macek M., Jr, Davis C., Curristin S. M., Chu C. S., Graham C., Shrimpton A. E., Cashman S. M., Tsui L. C., Mickle J. A mutation in CFTR produces different phenotypes depending on chromosomal background. Nat Genet. 1993 Nov;5(3):274–278. doi: 10.1038/ng1193-274. [DOI] [PubMed] [Google Scholar]
  30. Lukacs G. L., Mohamed A., Kartner N., Chang X. B., Riordan J. R., Grinstein S. Conformational maturation of CFTR but not its mutant counterpart (delta F508) occurs in the endoplasmic reticulum and requires ATP. EMBO J. 1994 Dec 15;13(24):6076–6086. doi: 10.1002/j.1460-2075.1994.tb06954.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Miller P. W., Hamosh A., Macek M., Jr, Greenberger P. A., MacLean J., Walden S. M., Slavin R. G., Cutting G. R. Cystic fibrosis transmembrane conductance regulator (CFTR) gene mutations in allergic bronchopulmonary aspergillosis. Am J Hum Genet. 1996 Jul;59(1):45–51. [PMC free article] [PubMed] [Google Scholar]
  32. Monari L., Chen S. G., Brown P., Parchi P., Petersen R. B., Mikol J., Gray F., Cortelli P., Montagna P., Ghetti B. Fatal familial insomnia and familial Creutzfeldt-Jakob disease: different prion proteins determined by a DNA polymorphism. Proc Natl Acad Sci U S A. 1994 Mar 29;91(7):2839–2842. doi: 10.1073/pnas.91.7.2839. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Pignatti P. F., Bombieri C., Benetazzo M., Casartelli A., Trabetti E., Gilè L. S., Martinati L. C., Boner A. L., Luisetti M. CFTR gene variant IVS8-5T in disseminated bronchiectasis. Am J Hum Genet. 1996 Apr;58(4):889–892. [PMC free article] [PubMed] [Google Scholar]
  34. Riordan J. R., Rommens J. M., Kerem B., Alon N., Rozmahel R., Grzelczak Z., Zielenski J., Lok S., Plavsic N., Chou J. L. Identification of the cystic fibrosis gene: cloning and characterization of complementary DNA. Science. 1989 Sep 8;245(4922):1066–1073. doi: 10.1126/science.2475911. [DOI] [PubMed] [Google Scholar]
  35. Rozmahel R., Wilschanski M., Matin A., Plyte S., Oliver M., Auerbach W., Moore A., Forstner J., Durie P., Nadeau J. Modulation of disease severity in cystic fibrosis transmembrane conductance regulator deficient mice by a secondary genetic factor. Nat Genet. 1996 Mar;12(3):280–287. doi: 10.1038/ng0396-280. [DOI] [PubMed] [Google Scholar]
  36. Sheppard D. N., Rich D. P., Ostedgaard L. S., Gregory R. J., Smith A. E., Welsh M. J. Mutations in CFTR associated with mild-disease-form Cl- channels with altered pore properties. Nature. 1993 Mar 11;362(6416):160–164. doi: 10.1038/362160a0. [DOI] [PubMed] [Google Scholar]
  37. Strittmatter W. J., Saunders A. M., Schmechel D., Pericak-Vance M., Enghild J., Salvesen G. S., Roses A. D. Apolipoprotein E: high-avidity binding to beta-amyloid and increased frequency of type 4 allele in late-onset familial Alzheimer disease. Proc Natl Acad Sci U S A. 1993 Mar 1;90(5):1977–1981. doi: 10.1073/pnas.90.5.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Strong T. V., Wilkinson D. J., Mansoura M. K., Devor D. C., Henze K., Yang Y., Wilson J. M., Cohn J. A., Dawson D. C., Frizzell R. A. Expression of an abundant alternatively spliced form of the cystic fibrosis transmembrane conductance regulator (CFTR) gene is not associated with a cAMP-activated chloride conductance. Hum Mol Genet. 1993 Mar;2(3):225–230. doi: 10.1093/hmg/2.3.225. [DOI] [PubMed] [Google Scholar]
  39. Tabcharani J. A., Chang X. B., Riordan J. R., Hanrahan J. W. Phosphorylation-regulated Cl- channel in CHO cells stably expressing the cystic fibrosis gene. Nature. 1991 Aug 15;352(6336):628–631. doi: 10.1038/352628a0. [DOI] [PubMed] [Google Scholar]
  40. Teng H., Jorissen M., Van Poppel H., Legius E., Cassiman J. J., Cuppens H. Increased proportion of exon 9 alternatively spliced CFTR transcripts in vas deferens compared with nasal epithelial cells. Hum Mol Genet. 1997 Jan;6(1):85–90. doi: 10.1093/hmg/6.1.85. [DOI] [PubMed] [Google Scholar]
  41. Todd J. A. Genetic analysis of type 1 diabetes using whole genome approaches. Proc Natl Acad Sci U S A. 1995 Sep 12;92(19):8560–8565. doi: 10.1073/pnas.92.19.8560. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Trapnell B. C., Chu C. S., Paakko P. K., Banks T. C., Yoshimura K., Ferrans V. J., Chernick M. S., Crystal R. G. Expression of the cystic fibrosis transmembrane conductance regulator gene in the respiratory tract of normal individuals and individuals with cystic fibrosis. Proc Natl Acad Sci U S A. 1991 Aug 1;88(15):6565–6569. doi: 10.1073/pnas.88.15.6565. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Welsh M. J., Smith A. E. Molecular mechanisms of CFTR chloride channel dysfunction in cystic fibrosis. Cell. 1993 Jul 2;73(7):1251–1254. doi: 10.1016/0092-8674(93)90353-r. [DOI] [PubMed] [Google Scholar]
  44. Zielenski J., Patrizio P., Corey M., Handelin B., Markiewicz D., Asch R., Tsui L. C. CFTR gene variant for patients with congenital absence of vas deferens. Am J Hum Genet. 1995 Oct;57(4):958–960. [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES