Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1998 Feb 1;101(3):543–548. doi: 10.1172/JCI1076

Skeletal muscle peroxisome proliferator- activated receptor-gamma expression in obesity and non- insulin-dependent diabetes mellitus.

Y T Kruszynska 1, R Mukherjee 1, L Jow 1, S Dana 1, J R Paterniti 1, J M Olefsky 1
PMCID: PMC508596  PMID: 9449686

Abstract

The two isoforms of peroxisome proliferator-activated receptor-gamma (PPARgamma1 and PPARgamma2), are ligand-activated transcription factors that are the intracellular targets of a new class of insulin sensitizing agents, the thiazolidinediones. The observation that thiazolidinediones enhance skeletal muscle insulin sensitivity in obesity and in patients with non-insulin-dependent diabetes mellitus (NIDDM), by activating PPARgamma, and possibly by inducing its expression, suggests that PPARgamma expression in skeletal muscle plays a key role in determining tissue sensitivity to insulin, and that PPARgamma expression may be decreased in insulin resistant subjects. We used a sensitive ribonuclease protection assay, that permits simultaneous measurement of the two isoforms, to examine the effects of obesity and NIDDM, and the effects of insulin, on skeletal muscle levels of PPARgamma1 and PPARgamma2 mRNA. We studied seven patients with NIDDM (body mass index, 32+/-1 kg/m2), seven lean (24+/-1 kg/m2), and six obese (36+/-1 kg/m2) normal subjects. Biopsies from the vastus lateralis muscle were taken before and after a 5-h hyperinsulinemic (80 mU/m2 per minute) euglycemic clamp. The obese controls and NIDDM patients were insulin resistant with glucose disposal rates during the last 30 min of the clamp that were 67 and 31%, respectively, of those found in the lean controls. PPARgamma1, but not PPARgamma2 mRNA was detected in skeletal muscle at 10-15% of the level found in adipose tissue. No difference was found in PPARgamma1 levels between the three groups, and there was no change in PPARgamma1 levels after 5 h of hyperinsulinemia. In obese subjects, PPARgamma1 correlated with clamp glucose disposal rates (r = 0.92, P < 0.01). In the lean and NIDDM patients, muscle PPARgamma1 levels correlated with percentage body fat (r = 0.76 and r = 0.82, respectively, both P < 0.05) but not with body mass index. In conclusion: (a) skeletal muscle PPARgamma1 expression does not differ between normal and diabetic subjects, and is not induced by short-term hyperinsulinemia; (b) skeletal muscle PPARgamma1 expression was higher in subjects whose percent body fat exceeded 25%, and this may be a compensatory phenomenon in an attempt to maintain normal insulin sensitivity.

Full Text

The Full Text of this article is available as a PDF (201.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Chawla A., Schwarz E. J., Dimaculangan D. D., Lazar M. A. Peroxisome proliferator-activated receptor (PPAR) gamma: adipose-predominant expression and induction early in adipocyte differentiation. Endocrinology. 1994 Aug;135(2):798–800. doi: 10.1210/endo.135.2.8033830. [DOI] [PubMed] [Google Scholar]
  2. Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
  3. Ciaraldi T. P., Huber-Knudsen K., Hickman M., Olefsky J. M. Regulation of glucose transport in cultured muscle cells by novel hypoglycemic agents. Metabolism. 1995 Aug;44(8):976–981. doi: 10.1016/0026-0495(95)90092-6. [DOI] [PubMed] [Google Scholar]
  4. DeFronzo R. A., Tobin J. D., Andres R. Glucose clamp technique: a method for quantifying insulin secretion and resistance. Am J Physiol. 1979 Sep;237(3):E214–E223. doi: 10.1152/ajpendo.1979.237.3.E214. [DOI] [PubMed] [Google Scholar]
  5. Desbuquois B., Aurbach G. D. Use of polyethylene glycol to separate free and antibody-bound peptide hormones in radioimmunoassays. J Clin Endocrinol Metab. 1971 Nov;33(5):732–738. doi: 10.1210/jcem-33-5-732. [DOI] [PubMed] [Google Scholar]
  6. Gearing K. L., Crickmore A., Gustafsson J. A. Structure of the mouse peroxisome proliferator activated receptor alpha gene. Biochem Biophys Res Commun. 1994 Feb 28;199(1):255–263. doi: 10.1006/bbrc.1994.1222. [DOI] [PubMed] [Google Scholar]
  7. Graves R. A., Tontonoz P., Spiegelman B. M. Analysis of a tissue-specific enhancer: ARF6 regulates adipogenic gene expression. Mol Cell Biol. 1992 Mar;12(3):1202–1208. doi: 10.1128/mcb.12.3.1202. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Hofmann C., Lorenz K., Braithwaite S. S., Colca J. R., Palazuk B. J., Hotamisligil G. S., Spiegelman B. M. Altered gene expression for tumor necrosis factor-alpha and its receptors during drug and dietary modulation of insulin resistance. Endocrinology. 1994 Jan;134(1):264–270. doi: 10.1210/endo.134.1.8275942. [DOI] [PubMed] [Google Scholar]
  9. Hotamisligil G. S., Arner P., Caro J. F., Atkinson R. L., Spiegelman B. M. Increased adipose tissue expression of tumor necrosis factor-alpha in human obesity and insulin resistance. J Clin Invest. 1995 May;95(5):2409–2415. doi: 10.1172/JCI117936. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hotamisligil G. S., Spiegelman B. M. Tumor necrosis factor alpha: a key component of the obesity-diabetes link. Diabetes. 1994 Nov;43(11):1271–1278. doi: 10.2337/diab.43.11.1271. [DOI] [PubMed] [Google Scholar]
  11. Hother-Nielsen O., Mengel A., Møller J., Rasmussen O., Schmitz O., Beck-Nielsen H. Assessment of glucose turnover rates in euglycaemic clamp studies using primed-constant [3-3H]-glucose infusion and labelled or unlabelled glucose infusates. Diabet Med. 1992 Nov;9(9):840–849. doi: 10.1111/j.1464-5491.1992.tb01903.x. [DOI] [PubMed] [Google Scholar]
  12. Hu E., Tontonoz P., Spiegelman B. M. Transdifferentiation of myoblasts by the adipogenic transcription factors PPAR gamma and C/EBP alpha. Proc Natl Acad Sci U S A. 1995 Oct 10;92(21):9856–9860. doi: 10.1073/pnas.92.21.9856. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Issemann I., Green S. Activation of a member of the steroid hormone receptor superfamily by peroxisome proliferators. Nature. 1990 Oct 18;347(6294):645–650. doi: 10.1038/347645a0. [DOI] [PubMed] [Google Scholar]
  14. Issemann I., Prince R. A., Tugwood J. D., Green S. The peroxisome proliferator-activated receptor:retinoid X receptor heterodimer is activated by fatty acids and fibrate hypolipidaemic drugs. J Mol Endocrinol. 1993 Aug;11(1):37–47. doi: 10.1677/jme.0.0110037. [DOI] [PubMed] [Google Scholar]
  15. Kliewer S. A., Lenhard J. M., Willson T. M., Patel I., Morris D. C., Lehmann J. M. A prostaglandin J2 metabolite binds peroxisome proliferator-activated receptor gamma and promotes adipocyte differentiation. Cell. 1995 Dec 1;83(5):813–819. doi: 10.1016/0092-8674(95)90194-9. [DOI] [PubMed] [Google Scholar]
  16. Kliewer S. A., Sundseth S. S., Jones S. A., Brown P. J., Wisely G. B., Koble C. S., Devchand P., Wahli W., Willson T. M., Lenhard J. M. Fatty acids and eicosanoids regulate gene expression through direct interactions with peroxisome proliferator-activated receptors alpha and gamma. Proc Natl Acad Sci U S A. 1997 Apr 29;94(9):4318–4323. doi: 10.1073/pnas.94.9.4318. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Kruszynska Y. T., Olefsky J. M. Cellular and molecular mechanisms of non-insulin dependent diabetes mellitus. J Investig Med. 1996 Oct;44(8):413–428. [PubMed] [Google Scholar]
  18. Lehmann J. M., Moore L. B., Smith-Oliver T. A., Wilkison W. O., Willson T. M., Kliewer S. A. An antidiabetic thiazolidinedione is a high affinity ligand for peroxisome proliferator-activated receptor gamma (PPAR gamma). J Biol Chem. 1995 Jun 2;270(22):12953–12956. doi: 10.1074/jbc.270.22.12953. [DOI] [PubMed] [Google Scholar]
  19. Mukherjee R., Jow L., Croston G. E., Paterniti J. R., Jr Identification, characterization, and tissue distribution of human peroxisome proliferator-activated receptor (PPAR) isoforms PPARgamma2 versus PPARgamma1 and activation with retinoid X receptor agonists and antagonists. J Biol Chem. 1997 Mar 21;272(12):8071–8076. doi: 10.1074/jbc.272.12.8071. [DOI] [PubMed] [Google Scholar]
  20. Nolan J. J., Ludvik B., Beerdsen P., Joyce M., Olefsky J. Improvement in glucose tolerance and insulin resistance in obese subjects treated with troglitazone. N Engl J Med. 1994 Nov 3;331(18):1188–1193. doi: 10.1056/NEJM199411033311803. [DOI] [PubMed] [Google Scholar]
  21. Rosenfalck A. M., Almdal T., Gotfredsen A., Hilsted J. Body composition in normal subjects: relation to lipid and glucose variables. Int J Obes Relat Metab Disord. 1996 Nov;20(11):1006–1013. [PubMed] [Google Scholar]
  22. STEELE R. Influences of glucose loading and of injected insulin on hepatic glucose output. Ann N Y Acad Sci. 1959 Sep 25;82:420–430. doi: 10.1111/j.1749-6632.1959.tb44923.x. [DOI] [PubMed] [Google Scholar]
  23. Saghizadeh M., Ong J. M., Garvey W. T., Henry R. R., Kern P. A. The expression of TNF alpha by human muscle. Relationship to insulin resistance. J Clin Invest. 1996 Feb 15;97(4):1111–1116. doi: 10.1172/JCI118504. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Saltiel A. R., Olefsky J. M. Thiazolidinediones in the treatment of insulin resistance and type II diabetes. Diabetes. 1996 Dec;45(12):1661–1669. doi: 10.2337/diab.45.12.1661. [DOI] [PubMed] [Google Scholar]
  25. Sandouk T., Reda D., Hofmann C. The antidiabetic agent pioglitazone increases expression of glucose transporters in 3T3-F442A cells by increasing messenger ribonucleic acid transcript stability. Endocrinology. 1993 Jul;133(1):352–359. doi: 10.1210/endo.133.1.8319581. [DOI] [PubMed] [Google Scholar]
  26. Schmidt A., Endo N., Rutledge S. J., Vogel R., Shinar D., Rodan G. A. Identification of a new member of the steroid hormone receptor superfamily that is activated by a peroxisome proliferator and fatty acids. Mol Endocrinol. 1992 Oct;6(10):1634–1641. doi: 10.1210/mend.6.10.1333051. [DOI] [PubMed] [Google Scholar]
  27. Suter S. L., Nolan J. J., Wallace P., Gumbiner B., Olefsky J. M. Metabolic effects of new oral hypoglycemic agent CS-045 in NIDDM subjects. Diabetes Care. 1992 Feb;15(2):193–203. doi: 10.2337/diacare.15.2.193. [DOI] [PubMed] [Google Scholar]
  28. Tafuri S. R. Troglitazone enhances differentiation, basal glucose uptake, and Glut1 protein levels in 3T3-L1 adipocytes. Endocrinology. 1996 Nov;137(11):4706–4712. doi: 10.1210/endo.137.11.8895337. [DOI] [PubMed] [Google Scholar]
  29. Tontonoz P., Hu E., Graves R. A., Budavari A. I., Spiegelman B. M. mPPAR gamma 2: tissue-specific regulator of an adipocyte enhancer. Genes Dev. 1994 May 15;8(10):1224–1234. doi: 10.1101/gad.8.10.1224. [DOI] [PubMed] [Google Scholar]
  30. Tontonoz P., Hu E., Spiegelman B. M. Stimulation of adipogenesis in fibroblasts by PPAR gamma 2, a lipid-activated transcription factor. Cell. 1994 Dec 30;79(7):1147–1156. doi: 10.1016/0092-8674(94)90006-x. [DOI] [PubMed] [Google Scholar]
  31. Vidal-Puig A. J., Considine R. V., Jimenez-Liñan M., Werman A., Pories W. J., Caro J. F., Flier J. S. Peroxisome proliferator-activated receptor gene expression in human tissues. Effects of obesity, weight loss, and regulation by insulin and glucocorticoids. J Clin Invest. 1997 May 15;99(10):2416–2422. doi: 10.1172/JCI119424. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Vidal-Puig A., Jimenez-Liñan M., Lowell B. B., Hamann A., Hu E., Spiegelman B., Flier J. S., Moller D. E. Regulation of PPAR gamma gene expression by nutrition and obesity in rodents. J Clin Invest. 1996 Jun 1;97(11):2553–2561. doi: 10.1172/JCI118703. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Willson T. M., Cobb J. E., Cowan D. J., Wiethe R. W., Correa I. D., Prakash S. R., Beck K. D., Moore L. B., Kliewer S. A., Lehmann J. M. The structure-activity relationship between peroxisome proliferator-activated receptor gamma agonism and the antihyperglycemic activity of thiazolidinediones. J Med Chem. 1996 Feb 2;39(3):665–668. doi: 10.1021/jm950395a. [DOI] [PubMed] [Google Scholar]
  34. Zhang B., Berger J., Hu E., Szalkowski D., White-Carrington S., Spiegelman B. M., Moller D. E. Negative regulation of peroxisome proliferator-activated receptor-gamma gene expression contributes to the antiadipogenic effects of tumor necrosis factor-alpha. Mol Endocrinol. 1996 Nov;10(11):1457–1466. doi: 10.1210/mend.10.11.8923470. [DOI] [PubMed] [Google Scholar]
  35. Zhang B., Berger J., Zhou G., Elbrecht A., Biswas S., White-Carrington S., Szalkowski D., Moller D. E. Insulin- and mitogen-activated protein kinase-mediated phosphorylation and activation of peroxisome proliferator-activated receptor gamma. J Biol Chem. 1996 Dec 13;271(50):31771–31774. doi: 10.1074/jbc.271.50.31771. [DOI] [PubMed] [Google Scholar]
  36. Zhu Y., Alvares K., Huang Q., Rao M. S., Reddy J. K. Cloning of a new member of the peroxisome proliferator-activated receptor gene family from mouse liver. J Biol Chem. 1993 Dec 25;268(36):26817–26820. [PubMed] [Google Scholar]
  37. Zhu Y., Qi C., Korenberg J. R., Chen X. N., Noya D., Rao M. S., Reddy J. K. Structural organization of mouse peroxisome proliferator-activated receptor gamma (mPPAR gamma) gene: alternative promoter use and different splicing yield two mPPAR gamma isoforms. Proc Natl Acad Sci U S A. 1995 Aug 15;92(17):7921–7925. doi: 10.1073/pnas.92.17.7921. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES