Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1998 Feb 1;101(3):604–612. doi: 10.1172/JCI1324

Distribution of heme oxygenase isoforms in rat liver. Topographic basis for carbon monoxide-mediated microvascular relaxation.

N Goda 1, K Suzuki 1, M Naito 1, S Takeoka 1, E Tsuchida 1, Y Ishimura 1, T Tamatani 1, M Suematsu 1
PMCID: PMC508604  PMID: 9449694

Abstract

Carbon monoxide (CO) derived from heme oxygenase has recently been shown to play a role in controlling hepatobiliary function, but intrahepatic distribution of the enzyme is unknown. We examined distribution of two kinds of the heme oxygenase isoforms (HO-1 and HO-2) in rat liver immunohistochemically using monoclonal antibodies. The results showed that distribution of the two isoforms had distinct topographic patterns: HO-1, an inducible isoform, was observed only in Kupffer cells, while HO-2, a constitutive form, distributed to parenchymal cells, but not to Kupffer cells. Both isoforms were undetectable in hepatic stellate cells and sinusoidal endothelial cells. Of the two isoforms, HO-2 in the parenchymal cell rather than HO-1 in the Kupffer cell, appears to play a major role in regulation of microvascular tone. In the perfused liver, administration of HbO2, a CO-trapping reagent that can diffuse across the fenestrated endothelium into the space of Disse, elicited a marked sinusoidal constriction, while administration of a liposome-encapsulated Hb that cannot enter the space had no effect on the microvascular tone. These results suggest that CO evolved by HO-2 in the parenchymal cells, and, released to the extrasinusoidal space, served as the physiological relaxant for hepatic sinusoids.

Full Text

The Full Text of this article is available as a PDF (753.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bissell D. M., Hammaker L., Schmid R. Hemoglobin and erythrocyte catabolism in rat liver: the separate roles of parenchymal and sinusoidal cells. Blood. 1972 Dec;40(6):812–822. [PubMed] [Google Scholar]
  2. Camhi S. L., Alam J., Otterbein L., Sylvester S. L., Choi A. M. Induction of heme oxygenase-1 gene expression by lipopolysaccharide is mediated by AP-1 activation. Am J Respir Cell Mol Biol. 1995 Oct;13(4):387–398. doi: 10.1165/ajrcmb.13.4.7546768. [DOI] [PubMed] [Google Scholar]
  3. Choi A. M., Alam J. Heme oxygenase-1: function, regulation, and implication of a novel stress-inducible protein in oxidant-induced lung injury. Am J Respir Cell Mol Biol. 1996 Jul;15(1):9–19. doi: 10.1165/ajrcmb.15.1.8679227. [DOI] [PubMed] [Google Scholar]
  4. Cruse I., Maines M. D. Evidence suggesting that the two forms of heme oxygenase are products of different genes. J Biol Chem. 1988 Mar 5;263(7):3348–3353. [PubMed] [Google Scholar]
  5. Eich R. F., Li T., Lemon D. D., Doherty D. H., Curry S. R., Aitken J. F., Mathews A. J., Johnson K. A., Smith R. D., Phillips G. N., Jr Mechanism of NO-induced oxidation of myoglobin and hemoglobin. Biochemistry. 1996 Jun 4;35(22):6976–6983. doi: 10.1021/bi960442g. [DOI] [PubMed] [Google Scholar]
  6. Ewing J. F., Maines M. D. Distribution of constitutive (HO-2) and heat-inducible (HO-1) heme oxygenase isozymes in rat testes: HO-2 displays stage-specific expression in germ cells. Endocrinology. 1995 May;136(5):2294–2302. doi: 10.1210/endo.136.5.7720678. [DOI] [PubMed] [Google Scholar]
  7. Ewing J. F., Maines M. D. Rapid induction of heme oxygenase 1 mRNA and protein by hyperthermia in rat brain: heme oxygenase 2 is not a heat shock protein. Proc Natl Acad Sci U S A. 1991 Jun 15;88(12):5364–5368. doi: 10.1073/pnas.88.12.5364. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Falkenberg F. W., Weichert H., Krane M., Bartels I., Palme M., Nagels H. O., Fiebig H. In vitro production of monoclonal antibodies in high concentration in a new and easy to handle modular minifermenter. J Immunol Methods. 1995 Feb 13;179(1):13–29. doi: 10.1016/0022-1759(94)00266-y. [DOI] [PubMed] [Google Scholar]
  9. Gulati A., Sharma A. C. Prazosin blocks the pressor but not the regional circulatory effects of diaspirin crosslinked hemoglobin. Life Sci. 1994;55(2):121–130. doi: 10.1016/0024-3205(94)90103-1. [DOI] [PubMed] [Google Scholar]
  10. Ignarro L. J., Ballot B., Wood K. S. Regulation of soluble guanylate cyclase activity by porphyrins and metalloporphyrins. J Biol Chem. 1984 May 25;259(10):6201–6207. [PubMed] [Google Scholar]
  11. Iigo Y., Suematsu M., Higashida T., Oheda J., Matsumoto K., Wakabayashi Y., Ishimura Y., Miyasaka M., Takashi T. Constitutive expression of ICAM-1 in rat microvascular systems analyzed by laser confocal microscopy. Am J Physiol. 1997 Jul;273(1 Pt 2):H138–H147. doi: 10.1152/ajpheart.1997.273.1.H138. [DOI] [PubMed] [Google Scholar]
  12. Kashiwagi S., Suematsu M., Wakabayashi Y., Kawada N., Tachibana M., Koizumi A., Inoue M., Ishimura Y., Kaneko A. Electrophysiological characterization of cultured hepatic stellate cells in rats. Am J Physiol. 1997 Apr;272(4 Pt 1):G742–G750. doi: 10.1152/ajpgi.1997.272.4.G742. [DOI] [PubMed] [Google Scholar]
  13. Kurata S., Matsumoto M., Tsuji Y., Nakajima H. Lipopolysaccharide activates transcription of the heme oxygenase gene in mouse M1 cells through oxidative activation of nuclear factor kappa B. Eur J Biochem. 1996 Aug 1;239(3):566–571. doi: 10.1111/j.1432-1033.1996.0566u.x. [DOI] [PubMed] [Google Scholar]
  14. Kutty R. K., Daniel R. F., Ryan D. E., Levin W., Maines M. D. Rat liver cytochrome P-450b, P-420b, and P-420c are degraded to biliverdin by heme oxygenase. Arch Biochem Biophys. 1988 Feb 1;260(2):638–644. doi: 10.1016/0003-9861(88)90492-4. [DOI] [PubMed] [Google Scholar]
  15. Linden D. J., Narasimhan K., Gurfel D. Protoporphyrins modulate voltage-gated Ca current in AtT-20 pituitary cells. J Neurophysiol. 1993 Dec;70(6):2673–2677. doi: 10.1152/jn.1993.70.6.2673. [DOI] [PubMed] [Google Scholar]
  16. Maines M. D. Heme oxygenase: function, multiplicity, regulatory mechanisms, and clinical applications. FASEB J. 1988 Jul;2(10):2557–2568. [PubMed] [Google Scholar]
  17. Maines M. D., Kappas A. Metals as regulators of heme metabolism. Science. 1977 Dec 23;198(4323):1215–1221. doi: 10.1126/science.337492. [DOI] [PubMed] [Google Scholar]
  18. McKinney M. M., Parkinson A. A simple, non-chromatographic procedure to purify immunoglobulins from serum and ascites fluid. J Immunol Methods. 1987 Feb 11;96(2):271–278. doi: 10.1016/0022-1759(87)90324-3. [DOI] [PubMed] [Google Scholar]
  19. Naito M., Wisse E. Filtration effect of endothelial fenestrations on chylomicron transport in neonatal rat liver sinusoids. Cell Tissue Res. 1978 Jul 10;190(3):371–382. doi: 10.1007/BF00219553. [DOI] [PubMed] [Google Scholar]
  20. Nishida J., McCuskey R. S., McDonnell D., Fox E. S. Protective role of NO in hepatic microcirculatory dysfunction during endotoxemia. Am J Physiol. 1994 Dec;267(6 Pt 1):G1135–G1141. doi: 10.1152/ajpgi.1994.267.6.G1135. [DOI] [PubMed] [Google Scholar]
  21. Ohashi H., Maruyama K., Liu Y. C., Yoshimura A. Ligand-induced activation of chimeric receptors between the erythropoietin receptor and receptor tyrosine kinases. Proc Natl Acad Sci U S A. 1994 Jan 4;91(1):158–162. doi: 10.1073/pnas.91.1.158. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Oshio C., Phillips M. J. Contractility of bile canaliculi: implications for liver function. Science. 1981 May 29;212(4498):1041–1042. doi: 10.1126/science.7015506. [DOI] [PubMed] [Google Scholar]
  23. Rizzardini M., Terao M., Falciani F., Cantoni L. Cytokine induction of haem oxygenase mRNA in mouse liver. Interleukin 1 transcriptionally activates the haem oxygenase gene. Biochem J. 1993 Mar 1;290(Pt 2):343–347. doi: 10.1042/bj2900343. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Roelofsen H., Schoemaker B., Bakker C., Ottenhoff R., Jansen P. L., Elferink R. P. Impaired hepatocanalicular organic anion transport in endotoxemic rats. Am J Physiol. 1995 Sep;269(3 Pt 1):G427–G434. doi: 10.1152/ajpgi.1995.269.3.G427. [DOI] [PubMed] [Google Scholar]
  25. Roelofsen H., van der Veere C. N., Ottenhoff R., Schoemaker B., Jansen P. L., Oude Elferink R. P. Decreased bilirubin transport in the perfused liver of endotoxemic rats. Gastroenterology. 1994 Oct;107(4):1075–1084. doi: 10.1016/0016-5085(94)90232-1. [DOI] [PubMed] [Google Scholar]
  26. Rotenberg M. O., Maines M. D. Isolation, characterization, and expression in Escherichia coli of a cDNA encoding rat heme oxygenase-2. J Biol Chem. 1990 May 5;265(13):7501–7506. [PubMed] [Google Scholar]
  27. Rudolph A. S., Spielberg H., Spargo B. J., Kossovsky N. Histopathologic study following administration of liposome-encapsulated hemoglobin in the normovolemic rat. J Biomed Mater Res. 1995 Feb;29(2):189–196. doi: 10.1002/jbm.820290208. [DOI] [PubMed] [Google Scholar]
  28. Sakai H., Hamada K., Takeoka S., Nishide H., Tsuchida E. Physical properties of hemoglobin vesicles as red cell substitutes. Biotechnol Prog. 1996 Jan-Feb;12(1):119–125. doi: 10.1021/bp950068w. [DOI] [PubMed] [Google Scholar]
  29. Sakai H., Takeoka S., Yokohama H., Seino Y., Nishide H., Tsuchida E. Purification of concentrated hemoglobin using organic solvent and heat treatment. Protein Expr Purif. 1993 Dec;4(6):563–569. doi: 10.1006/prep.1993.1074. [DOI] [PubMed] [Google Scholar]
  30. Sano T., Shiomi M., Wakabayashi Y., Shinoda Y., Goda N., Yamaguchi T., Nimura Y., Ishimura Y., Suematsu M. Endogenous carbon monoxide suppression stimulates bile acid-dependent biliary transport in perfused rat liver. Am J Physiol. 1997 May;272(5 Pt 1):G1268–G1275. doi: 10.1152/ajpgi.1997.272.5.G1268. [DOI] [PubMed] [Google Scholar]
  31. Shibahara S., Müller R., Taguchi H., Yoshida T. Cloning and expression of cDNA for rat heme oxygenase. Proc Natl Acad Sci U S A. 1985 Dec;82(23):7865–7869. doi: 10.1073/pnas.82.23.7865. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Stock R. J., Cilento E. V., McCuskey R. S. A quantitative study of fluorescein isothiocyanate-dextran transport in the microcirculation of the isolated perfused rat liver. Hepatology. 1989 Jan;9(1):75–82. doi: 10.1002/hep.1840090112. [DOI] [PubMed] [Google Scholar]
  33. Stocker R., Glazer A. N., Ames B. N. Antioxidant activity of albumin-bound bilirubin. Proc Natl Acad Sci U S A. 1987 Aug;84(16):5918–5922. doi: 10.1073/pnas.84.16.5918. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Suda T., Takahashi T., Golstein P., Nagata S. Molecular cloning and expression of the Fas ligand, a novel member of the tumor necrosis factor family. Cell. 1993 Dec 17;75(6):1169–1178. doi: 10.1016/0092-8674(93)90326-l. [DOI] [PubMed] [Google Scholar]
  35. Suematsu M., Goda N., Sano T., Kashiwagi S., Egawa T., Shinoda Y., Ishimura Y. Carbon monoxide: an endogenous modulator of sinusoidal tone in the perfused rat liver. J Clin Invest. 1995 Nov;96(5):2431–2437. doi: 10.1172/JCI118300. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Suematsu M., Kashiwagi S., Sano T., Goda N., Shinoda Y., Ishimura Y. Carbon monoxide as an endogenous modulator of hepatic vascular perfusion. Biochem Biophys Res Commun. 1994 Dec 15;205(2):1333–1337. doi: 10.1006/bbrc.1994.2811. [DOI] [PubMed] [Google Scholar]
  37. Suematsu M., Oda M., Suzuki H., Kaneko H., Watanabe N., Furusho T., Masushige S., Tsuchiya M. Intravital and electron microscopic observation of Ito cells in rat hepatic microcirculation. Microvasc Res. 1993 Jul;46(1):28–42. doi: 10.1006/mvre.1993.1033. [DOI] [PubMed] [Google Scholar]
  38. Tacchini L., Schiaffonati L., Pappalardo C., Gatti S., Bernelli-Zazzera A. Expression of HSP 70, immediate-early response and heme oxygenase genes in ischemic-reperfused rat liver. Lab Invest. 1993 Apr;68(4):465–471. [PubMed] [Google Scholar]
  39. Wake K. Perisinusoidal stellate cells (fat-storing cells, interstitial cells, lipocytes), their related structure in and around the liver sinusoids, and vitamin A-storing cells in extrahepatic organs. Int Rev Cytol. 1980;66:303–353. doi: 10.1016/s0074-7696(08)61977-4. [DOI] [PubMed] [Google Scholar]
  40. Wisse E., De Zanger R. B., Charels K., Van Der Smissen P., McCuskey R. S. The liver sieve: considerations concerning the structure and function of endothelial fenestrae, the sinusoidal wall and the space of Disse. Hepatology. 1985 Jul-Aug;5(4):683–692. doi: 10.1002/hep.1840050427. [DOI] [PubMed] [Google Scholar]
  41. Wolff D. J., Naddelman R. A., Lubeskie A., Saks D. A. Inhibition of nitric oxide synthase isoforms by porphyrins. Arch Biochem Biophys. 1996 Sep 1;333(1):27–34. doi: 10.1006/abbi.1996.0360. [DOI] [PubMed] [Google Scholar]
  42. Yamaguchi T., Horio F., Hashizume T., Tanaka M., Ikeda S., Kakinuma A., Nakajima H. Bilirubin is oxidized in rats treated with endotoxin and acts as a physiological antioxidant synergistically with ascorbic acid in vivo. Biochem Biophys Res Commun. 1995 Sep 5;214(1):11–19. doi: 10.1006/bbrc.1995.2250. [DOI] [PubMed] [Google Scholar]
  43. Yamaguchi T., Wakabayashi Y., Tanaka M., Sano T., Ishikawa H., Nakajima H., Suematsu M., Ishimura Y. Taurocholate induces directional excretion of bilirubin into bile in perfused rat liver. Am J Physiol. 1996 Jun;270(6 Pt 1):G1028–G1032. doi: 10.1152/ajpgi.1996.270.6.G1028. [DOI] [PubMed] [Google Scholar]
  44. Yamamoto T., Naito M., Moriyama H., Umezu H., Matsuo H., Kiwada H., Arakawa M. Repopulation of murine Kupffer cells after intravenous administration of liposome-encapsulated dichloromethylene diphosphonate. Am J Pathol. 1996 Oct;149(4):1271–1286. [PMC free article] [PubMed] [Google Scholar]
  45. Yoshida T., Kikuchi G. Reaction of the microsomal heme oxygenase with cobaltic protoporphyrin IX, and extremely poor substrate. J Biol Chem. 1978 Dec 10;253(23):8479–8482. [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES