Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1998 Feb 1;101(3):660–666. doi: 10.1172/JCI1378

Nitric oxide synthesis in the lung. Regulation by oxygen through a kinetic mechanism.

R A Dweik 1, D Laskowski 1, H M Abu-Soud 1, F Kaneko 1, R Hutte 1, D J Stuehr 1, S C Erzurum 1
PMCID: PMC508610  PMID: 9449700

Abstract

In this study, we show that oxygen regulates nitric oxide (NO) levels through effects on NO synthase (NOS) enzyme kinetics. Initially, NO synthesis in the static lung was measured in bronchiolar gases during an expiratory breath-hold in normal individuals. NO accumulated exponentially to a plateau, indicating balance between NO production and consumption in the lung. Detection of NO2-, NO3-, and S-nitrosothiols in lung epithelial lining fluids confirmed NO consumption by chemical reactions in the lung. Interestingly, alveolar gas NO (estimated from bronchiolar gases at end-expiration) was near zero, suggesting NO in exhaled gases is not derived from circulatory/systemic sources. Dynamic NO levels during tidal breathing in different airway regions (mouth, trachea, bronchus, and bronchiole) were similar. However, in individuals breathing varying levels of inspired oxygen, dynamic NO levels were notably dependent on O2 concentration in the hypoxic range (KmO2 190 microM). Purified NOS type II enzyme activity in vitro was similarly dependent on molecular oxygen levels (KmO2 135 microM), revealing a means by which oxygen concentration affects NO levels in vivo. Based upon these results, we propose that NOS II is a mediator of the vascular response to oxygen in the lung, because its KmO2 allows generation of NO in proportion to the inspired oxygen concentration throughout the physiologic range.

Full Text

The Full Text of this article is available as a PDF (222.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abu-Soud H. M., Gachhui R., Raushel F. M., Stuehr D. J. The ferrous-dioxy complex of neuronal nitric oxide synthase. Divergent effects of L-arginine and tetrahydrobiopterin on its stability. J Biol Chem. 1997 Jul 11;272(28):17349–17353. doi: 10.1074/jbc.272.28.17349. [DOI] [PubMed] [Google Scholar]
  2. Abu-Soud H. M., Rousseau D. L., Stuehr D. J. Nitric oxide binding to the heme of neuronal nitric-oxide synthase links its activity to changes in oxygen tension. J Biol Chem. 1996 Dec 20;271(51):32515–32518. doi: 10.1074/jbc.271.51.32515. [DOI] [PubMed] [Google Scholar]
  3. Abu-Soud H. M., Wang J., Rousseau D. L., Fukuto J. M., Ignarro L. J., Stuehr D. J. Neuronal nitric oxide synthase self-inactivates by forming a ferrous-nitrosyl complex during aerobic catalysis. J Biol Chem. 1995 Sep 29;270(39):22997–23006. doi: 10.1074/jbc.270.39.22997. [DOI] [PubMed] [Google Scholar]
  4. Archer S. Measurement of nitric oxide in biological models. FASEB J. 1993 Feb 1;7(2):349–360. doi: 10.1096/fasebj.7.2.8440411. [DOI] [PubMed] [Google Scholar]
  5. Blitzer M. L., Loh E., Roddy M. A., Stamler J. S., Creager M. A. Endothelium-derived nitric oxide regulates systemic and pulmonary vascular resistance during acute hypoxia in humans. J Am Coll Cardiol. 1996 Sep;28(3):591–596. doi: 10.1016/0735-1097(96)00218-5. [DOI] [PubMed] [Google Scholar]
  6. Byrnes C. A., Dinarevic S., Busst C., Bush A., Shinebourne E. A. Is nitric oxide in exhaled air produced at airway or alveolar level? Eur Respir J. 1997 May;10(5):1021–1025. doi: 10.1183/09031936.97.10051021. [DOI] [PubMed] [Google Scholar]
  7. Clarkson R. B., Norby S. W., Smirnov A., Boyer S., Vahidi N., Nims R. W., Wink D. A. Direct measurement of the accumulation and mitochondrial conversion of nitric oxide within Chinese hamster ovary cells using an intracellular electron paramagnetic resonance technique. Biochim Biophys Acta. 1995 Apr 13;1243(3):496–502. doi: 10.1016/0304-4165(94)00181-v. [DOI] [PubMed] [Google Scholar]
  8. Cornfield D. N., Reeve H. L., Tolarova S., Weir E. K., Archer S. Oxygen causes fetal pulmonary vasodilation through activation of a calcium-dependent potassium channel. Proc Natl Acad Sci U S A. 1996 Jul 23;93(15):8089–8094. doi: 10.1073/pnas.93.15.8089. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Dillon W. C., Hampl V., Shultz P. J., Rubins J. B., Archer S. L. Origins of breath nitric oxide in humans. Chest. 1996 Oct;110(4):930–938. doi: 10.1378/chest.110.4.930. [DOI] [PubMed] [Google Scholar]
  10. Gaston B., Drazen J. M., Loscalzo J., Stamler J. S. The biology of nitrogen oxides in the airways. Am J Respir Crit Care Med. 1994 Feb;149(2 Pt 1):538–551. doi: 10.1164/ajrccm.149.2.7508323. [DOI] [PubMed] [Google Scholar]
  11. Gaston B., Reilly J., Drazen J. M., Fackler J., Ramdev P., Arnelle D., Mullins M. E., Sugarbaker D. J., Chee C., Singel D. J. Endogenous nitrogen oxides and bronchodilator S-nitrosothiols in human airways. Proc Natl Acad Sci U S A. 1993 Dec 1;90(23):10957–10961. doi: 10.1073/pnas.90.23.10957. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Guo F. H., De Raeve H. R., Rice T. W., Stuehr D. J., Thunnissen F. B., Erzurum S. C. Continuous nitric oxide synthesis by inducible nitric oxide synthase in normal human airway epithelium in vivo. Proc Natl Acad Sci U S A. 1995 Aug 15;92(17):7809–7813. doi: 10.1073/pnas.92.17.7809. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Gustafsson L. E., Leone A. M., Persson M. G., Wiklund N. P., Moncada S. Endogenous nitric oxide is present in the exhaled air of rabbits, guinea pigs and humans. Biochem Biophys Res Commun. 1991 Dec 16;181(2):852–857. doi: 10.1016/0006-291x(91)91268-h. [DOI] [PubMed] [Google Scholar]
  14. Hurshman A. R., Marletta M. A. Nitric oxide complexes of inducible nitric oxide synthase: spectral characterization and effect on catalytic activity. Biochemistry. 1995 Apr 25;34(16):5627–5634. doi: 10.1021/bi00016a038. [DOI] [PubMed] [Google Scholar]
  15. Johns R. A., Linden J. M., Peach M. J. Endothelium-dependent relaxation and cyclic GMP accumulation in rabbit pulmonary artery are selectively impaired by moderate hypoxia. Circ Res. 1989 Dec;65(6):1508–1515. doi: 10.1161/01.res.65.6.1508. [DOI] [PubMed] [Google Scholar]
  16. Jones D. P. Intracellular diffusion gradients of O2 and ATP. Am J Physiol. 1986 May;250(5 Pt 1):C663–C675. doi: 10.1152/ajpcell.1986.250.5.C663. [DOI] [PubMed] [Google Scholar]
  17. Kharitonov V. G., Sundquist A. R., Sharma V. S. Kinetics of nitric oxide autoxidation in aqueous solution. J Biol Chem. 1994 Feb 25;269(8):5881–5883. [PubMed] [Google Scholar]
  18. Kobzik L., Bredt D. S., Lowenstein C. J., Drazen J., Gaston B., Sugarbaker D., Stamler J. S. Nitric oxide synthase in human and rat lung: immunocytochemical and histochemical localization. Am J Respir Cell Mol Biol. 1993 Oct;9(4):371–377. doi: 10.1165/ajrcmb/9.4.371. [DOI] [PubMed] [Google Scholar]
  19. Lancaster J. R., Jr A tutorial on the diffusibility and reactivity of free nitric oxide. Nitric Oxide. 1997 Feb;1(1):18–30. doi: 10.1006/niox.1996.0112. [DOI] [PubMed] [Google Scholar]
  20. Lancaster J. R., Jr Simulation of the diffusion and reaction of endogenously produced nitric oxide. Proc Natl Acad Sci U S A. 1994 Aug 16;91(17):8137–8141. doi: 10.1073/pnas.91.17.8137. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Laurent M., Lepoivre M., Tenu J. P. Kinetic modelling of the nitric oxide gradient generated in vitro by adherent cells expressing inducible nitric oxide synthase. Biochem J. 1996 Feb 15;314(Pt 1):109–113. doi: 10.1042/bj3140109. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Liao J. K., Zulueta J. J., Yu F. S., Peng H. B., Cote C. G., Hassoun P. M. Regulation of bovine endothelial constitutive nitric oxide synthase by oxygen. J Clin Invest. 1995 Dec;96(6):2661–2666. doi: 10.1172/JCI118332. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Lundberg J. O., Farkas-Szallasi T., Weitzberg E., Rinder J., Lidholm J., Anggåard A., Hökfelt T., Lundberg J. M., Alving K. High nitric oxide production in human paranasal sinuses. Nat Med. 1995 Apr;1(4):370–373. doi: 10.1038/nm0495-370. [DOI] [PubMed] [Google Scholar]
  24. Malinski T., Taha Z., Grunfeld S., Patton S., Kapturczak M., Tomboulian P. Diffusion of nitric oxide in the aorta wall monitored in situ by porphyrinic microsensors. Biochem Biophys Res Commun. 1993 Jun 30;193(3):1076–1082. doi: 10.1006/bbrc.1993.1735. [DOI] [PubMed] [Google Scholar]
  25. Masters B. R., Riley M. V., Fischbarg J., Chance B. Pyridine nucleotides of rabbit cornea with histotoxic anoxia: chemical analysis, non-invasive fluorometry and physiological correlates. Exp Eye Res. 1983 Jul;37(1):1–9. doi: 10.1016/0014-4835(83)90144-6. [DOI] [PubMed] [Google Scholar]
  26. McQueston J. A., Cornfield D. N., McMurtry I. F., Abman S. H. Effects of oxygen and exogenous L-arginine on EDRF activity in fetal pulmonary circulation. Am J Physiol. 1993 Mar;264(3 Pt 2):H865–H871. doi: 10.1152/ajpheart.1993.264.3.H865. [DOI] [PubMed] [Google Scholar]
  27. Melillo G., Musso T., Sica A., Taylor L. S., Cox G. W., Varesio L. A hypoxia-responsive element mediates a novel pathway of activation of the inducible nitric oxide synthase promoter. J Exp Med. 1995 Dec 1;182(6):1683–1693. doi: 10.1084/jem.182.6.1683. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Moncada S., Higgs A. The L-arginine-nitric oxide pathway. N Engl J Med. 1993 Dec 30;329(27):2002–2012. doi: 10.1056/NEJM199312303292706. [DOI] [PubMed] [Google Scholar]
  29. Nathan C. Nitric oxide as a secretory product of mammalian cells. FASEB J. 1992 Sep;6(12):3051–3064. [PubMed] [Google Scholar]
  30. Nelin L. D., Thomas C. J., Dawson C. A. Effect of hypoxia on nitric oxide production in neonatal pig lung. Am J Physiol. 1996 Jul;271(1 Pt 2):H8–14. doi: 10.1152/ajpheart.1996.271.1.H8. [DOI] [PubMed] [Google Scholar]
  31. Phelan M. W., Faller D. V. Hypoxia decreases constitutive nitric oxide synthase transcript and protein in cultured endothelial cells. J Cell Physiol. 1996 Jun;167(3):469–476. doi: 10.1002/(SICI)1097-4652(199606)167:3<469::AID-JCP11>3.0.CO;2-#. [DOI] [PubMed] [Google Scholar]
  32. Rengasamy A., Johns R. A. Determination of Km for oxygen of nitric oxide synthase isoforms. J Pharmacol Exp Ther. 1996 Jan;276(1):30–33. [PubMed] [Google Scholar]
  33. Rennard S. I., Basset G., Lecossier D., O'Donnell K. M., Pinkston P., Martin P. G., Crystal R. G. Estimation of volume of epithelial lining fluid recovered by lavage using urea as marker of dilution. J Appl Physiol (1985) 1986 Feb;60(2):532–538. doi: 10.1152/jappl.1986.60.2.532. [DOI] [PubMed] [Google Scholar]
  34. SOBOL B. J., BOTTEX G., EMIRGIL C., GISSEN H. GASEOUS DIFFUSION FROM ALVEOLI TO PULMONARY VESSELS OF CONSIDERABLE SIZE. Circ Res. 1963 Jul;13:71–79. doi: 10.1161/01.res.13.1.71. [DOI] [PubMed] [Google Scholar]
  35. Schmidt H. H., Walter U. NO at work. Cell. 1994 Sep 23;78(6):919–925. doi: 10.1016/0092-8674(94)90267-4. [DOI] [PubMed] [Google Scholar]
  36. Stamler J. S., Jia L., Eu J. P., McMahon T. J., Demchenko I. T., Bonaventura J., Gernert K., Piantadosi C. A. Blood flow regulation by S-nitrosohemoglobin in the physiological oxygen gradient. Science. 1997 Jun 27;276(5321):2034–2037. doi: 10.1126/science.276.5321.2034. [DOI] [PubMed] [Google Scholar]
  37. Stamler J. S., Singel D. J., Loscalzo J. Biochemistry of nitric oxide and its redox-activated forms. Science. 1992 Dec 18;258(5090):1898–1902. doi: 10.1126/science.1281928. [DOI] [PubMed] [Google Scholar]
  38. Stuehr D. J., Griffith O. W. Mammalian nitric oxide synthases. Adv Enzymol Relat Areas Mol Biol. 1992;65:287–346. doi: 10.1002/9780470123119.ch8. [DOI] [PubMed] [Google Scholar]
  39. Tribble D. L., Jones D. P. Oxygen dependence of oxidative stress. Rate of NADPH supply for maintaining the GSH pool during hypoxia. Biochem Pharmacol. 1990 Feb 15;39(4):729–736. doi: 10.1016/0006-2952(90)90152-b. [DOI] [PubMed] [Google Scholar]
  40. Tsujino I., Miyamoto K., Nishimura M., Shinano H., Makita H., Saito S., Nakano T., Kawakami Y. Production of nitric oxide (NO) in intrathoracic airways of normal humans. Am J Respir Crit Care Med. 1996 Nov;154(5):1370–1374. doi: 10.1164/ajrccm.154.5.8912750. [DOI] [PubMed] [Google Scholar]
  41. Vanderkooi J. M., Erecińska M., Silver I. A. Oxygen in mammalian tissue: methods of measurement and affinities of various reactions. Am J Physiol. 1991 Jun;260(6 Pt 1):C1131–C1150. doi: 10.1152/ajpcell.1991.260.6.C1131. [DOI] [PubMed] [Google Scholar]
  42. Voelkel N. F. Mechanisms of hypoxic pulmonary vasoconstriction. Am Rev Respir Dis. 1986 Jun;133(6):1186–1195. doi: 10.1164/arrd.1986.133.6.1186. [DOI] [PubMed] [Google Scholar]
  43. Volkholz H. J., Höper J., Brunner M., Frank K. H., Harrison D. K., Ellermann R., Kessler M. Measurement of local PO2 and intracapillary hemoglobin oxygenation in lung tissue of rabbits. Adv Exp Med Biol. 1984;169:633–641. doi: 10.1007/978-1-4684-1188-1_57. [DOI] [PubMed] [Google Scholar]
  44. Wakita M., Nishimura G., Tamura M. Some characteristics of the fluorescence lifetime of reduced pyridine nucleotides in isolated mitochondria, isolated hepatocytes, and perfused rat liver in situ. J Biochem. 1995 Dec;118(6):1151–1160. doi: 10.1093/oxfordjournals.jbchem.a125001. [DOI] [PubMed] [Google Scholar]
  45. Wink D. A., Hanbauer I., Grisham M. B., Laval F., Nims R. W., Laval J., Cook J., Pacelli R., Liebmann J., Krishna M. Chemical biology of nitric oxide: regulation and protective and toxic mechanisms. Curr Top Cell Regul. 1996;34:159–187. doi: 10.1016/s0070-2137(96)80006-9. [DOI] [PubMed] [Google Scholar]
  46. Wu C., Zhang J., Abu-Soud H., Ghosh D. K., Stuehr D. J. High-level expression of mouse inducible nitric oxide synthase in Escherichia coli requires coexpression with calmodulin. Biochem Biophys Res Commun. 1996 May 15;222(2):439–444. doi: 10.1006/bbrc.1996.0763. [DOI] [PubMed] [Google Scholar]
  47. Zeballos R. J., Weisman I. M. Behind the scenes of cardiopulmonary exercise testing. Clin Chest Med. 1994 Jun;15(2):193–213. [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES