Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1998 Feb 15;101(4):725–730. doi: 10.1172/JCI1528

Decreased dependence of myelin basic protein-reactive T cells on CD28-mediated costimulation in multiple sclerosis patients. A marker of activated/memory T cells.

A E Lovett-Racke 1, J L Trotter 1, J Lauber 1, P J Perrin 1, C H June 1, M K Racke 1
PMCID: PMC508618  PMID: 9466965

Abstract

Although multiple sclerosis (MS) patients and healthy individuals have similar frequencies of myelin basic protein (MBP)-specific T cells, the activation state of these cells has not been well characterized. Therefore, we investigated the dependence of MBP-reactive T cells on CD28-mediated costimulation in MS patients, healthy controls, and stroke patients. MBP-reactive T cells from healthy controls and stroke patients failed to proliferate efficiently when costimulation was blocked using anti-CD28, consistent with a naive T cell response. In contrast, MBP-specific T cell proliferation was not inhibited, or was only partially inhibited when CD28-mediated costimulation was blocked in MS patients. Blockade of CD28 failed to inhibit tetanus toxoid-specific T cell proliferation in both the controls and MS patients, demonstrating that memory cells are not dependent on CD28-mediated costimulation. Limiting dilution analysis indicated that the frequency of MBP-reactive T cells was significantly decreased in healthy controls compared with MS patients when CD28-mediated costimulation was blocked. These data suggest that MBP-reactive T cells are more likely to have been activated in vivo and/or differentiated into memory T cells in MS patients compared with controls, indicating that these cells may be participating in the pathogenesis of MS.

Full Text

The Full Text of this article is available as a PDF (172.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allegretta M., Nicklas J. A., Sriram S., Albertini R. J. T cells responsive to myelin basic protein in patients with multiple sclerosis. Science. 1990 Feb 9;247(4943):718–721. doi: 10.1126/science.1689076. [DOI] [PubMed] [Google Scholar]
  2. Croft M., Bradley L. M., Swain S. L. Naive versus memory CD4 T cell response to antigen. Memory cells are less dependent on accessory cell costimulation and can respond to many antigen-presenting cell types including resting B cells. J Immunol. 1994 Mar 15;152(6):2675–2685. [PubMed] [Google Scholar]
  3. Currier R. D., Martin E. A., Woosley P. C. Prior events in multiple sclerosis. Neurology. 1974 Aug;24(8):748–754. doi: 10.1212/wnl.24.8.748. [DOI] [PubMed] [Google Scholar]
  4. Damle N. K., Hansen J. A., Good R. A., Gupta S. Monoclonal antibody analysis of human T lymphocyte subpopulations exhibiting autologous mixed lymphocyte reaction. Proc Natl Acad Sci U S A. 1981 Aug;78(8):5096–5098. doi: 10.1073/pnas.78.8.5096. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Gimmi C. D., Freeman G. J., Gribben J. G., Gray G., Nadler L. M. Human T-cell clonal anergy is induced by antigen presentation in the absence of B7 costimulation. Proc Natl Acad Sci U S A. 1993 Jul 15;90(14):6586–6590. doi: 10.1073/pnas.90.14.6586. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Harris J. O., Frank J. A., Patronas N., McFarlin D. E., McFarland H. F. Serial gadolinium-enhanced magnetic resonance imaging scans in patients with early, relapsing-remitting multiple sclerosis: implications for clinical trials and natural history. Ann Neurol. 1991 May;29(5):548–555. doi: 10.1002/ana.410290515. [DOI] [PubMed] [Google Scholar]
  7. Hemmer B., Fleckenstein B. T., Vergelli M., Jung G., McFarland H., Martin R., Wiesmüller K. H. Identification of high potency microbial and self ligands for a human autoreactive class II-restricted T cell clone. J Exp Med. 1997 May 5;185(9):1651–1659. doi: 10.1084/jem.185.9.1651. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Jingwu Z., Medaer R., Hashim G. A., Chin Y., van den Berg-Loonen E., Raus J. C. Myelin basic protein-specific T lymphocytes in multiple sclerosis and controls: precursor frequency, fine specificity, and cytotoxicity. Ann Neurol. 1992 Sep;32(3):330–338. doi: 10.1002/ana.410320305. [DOI] [PubMed] [Google Scholar]
  9. Joshi N., Usuku K., Hauser S. L. The T-cell response to myelin basic protein in familial multiple sclerosis: diversity of fine specificity, restricting elements, and T-cell receptor usage. Ann Neurol. 1993 Sep;34(3):385–393. doi: 10.1002/ana.410340313. [DOI] [PubMed] [Google Scholar]
  10. Karandikar N. J., Vanderlugt C. L., Walunas T. L., Miller S. D., Bluestone J. A. CTLA-4: a negative regulator of autoimmune disease. J Exp Med. 1996 Aug 1;184(2):783–788. doi: 10.1084/jem.184.2.783. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Kawaguchi M., Eckels D. D. Differential activation through the TCR-CD3 complex affects the requirement for costimulation of human T cells. Hum Immunol. 1995 Jun;43(2):136–148. doi: 10.1016/0198-8859(94)00160-r. [DOI] [PubMed] [Google Scholar]
  12. Liu Y., Janeway C. A., Jr Cells that present both specific ligand and costimulatory activity are the most efficient inducers of clonal expansion of normal CD4 T cells. Proc Natl Acad Sci U S A. 1992 May 1;89(9):3845–3849. doi: 10.1073/pnas.89.9.3845. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Lovett-Racke A. E., Martin R., McFarland H. F., Racke M. K., Utz U. Longitudinal study of myelin basic protein-specific T-cell receptors during the course of multiple sclerosis. J Neuroimmunol. 1997 Sep;78(1-2):162–171. doi: 10.1016/s0165-5728(97)00097-0. [DOI] [PubMed] [Google Scholar]
  14. Martin R., Jaraquemada D., Flerlage M., Richert J., Whitaker J., Long E. O., McFarlin D. E., McFarland H. F. Fine specificity and HLA restriction of myelin basic protein-specific cytotoxic T cell lines from multiple sclerosis patients and healthy individuals. J Immunol. 1990 Jul 15;145(2):540–548. [PubMed] [Google Scholar]
  15. Miller S. D., Vanderlugt C. L., Lenschow D. J., Pope J. G., Karandikar N. J., Dal Canto M. C., Bluestone J. A. Blockade of CD28/B7-1 interaction prevents epitope spreading and clinical relapses of murine EAE. Immunity. 1995 Dec;3(6):739–745. doi: 10.1016/1074-7613(95)90063-2. [DOI] [PubMed] [Google Scholar]
  16. Ota K., Matsui M., Milford E. L., Mackin G. A., Weiner H. L., Hafler D. A. T-cell recognition of an immunodominant myelin basic protein epitope in multiple sclerosis. Nature. 1990 Jul 12;346(6280):183–187. doi: 10.1038/346183a0. [DOI] [PubMed] [Google Scholar]
  17. Perez V. L., Van Parijs L., Biuckians A., Zheng X. X., Strom T. B., Abbas A. K. Induction of peripheral T cell tolerance in vivo requires CTLA-4 engagement. Immunity. 1997 Apr;6(4):411–417. doi: 10.1016/s1074-7613(00)80284-8. [DOI] [PubMed] [Google Scholar]
  18. Perrin P. J., Maldonado J. H., Davis T. A., June C. H., Racke M. K. CTLA-4 blockade enhances clinical disease and cytokine production during experimental allergic encephalomyelitis. J Immunol. 1996 Aug 15;157(4):1333–1336. [PubMed] [Google Scholar]
  19. Perrin P. J., Scott D., Quigley L., Albert P. S., Feder O., Gray G. S., Abe R., June C. H., Racke M. K. Role of B7:CD28/CTLA-4 in the induction of chronic relapsing experimental allergic encephalomyelitis. J Immunol. 1995 Feb 1;154(3):1481–1490. [PubMed] [Google Scholar]
  20. Racke M. K., Scott D. E., Quigley L., Gray G. S., Abe R., June C. H., Perrin P. J. Distinct roles for B7-1 (CD-80) and B7-2 (CD-86) in the initiation of experimental allergic encephalomyelitis. J Clin Invest. 1995 Nov;96(5):2195–2203. doi: 10.1172/JCI118274. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Sagerström C. G., Kerr E. M., Allison J. P., Davis M. M. Activation and differentiation requirements of primary T cells in vitro. Proc Natl Acad Sci U S A. 1993 Oct 1;90(19):8987–8991. doi: 10.1073/pnas.90.19.8987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Schwartz R. H. A cell culture model for T lymphocyte clonal anergy. Science. 1990 Jun 15;248(4961):1349–1356. doi: 10.1126/science.2113314. [DOI] [PubMed] [Google Scholar]
  23. Stone L. A., Albert P. S., Smith M. E., DeCarli C., Armstrong M. R., McFarlin D. E., Frank J. A., McFarland H. F. Changes in the amount of diseased white matter over time in patients with relapsing-remitting multiple sclerosis. Neurology. 1995 Oct;45(10):1808–1814. doi: 10.1212/wnl.45.10.1808. [DOI] [PubMed] [Google Scholar]
  24. Taswell C. Limiting dilution assays for the determination of immunocompetent cell frequencies. III. Validity tests for the single-hit Poisson model. J Immunol Methods. 1984 Aug 3;72(1):29–40. doi: 10.1016/0022-1759(84)90430-7. [DOI] [PubMed] [Google Scholar]
  25. Tivol E. A., Borriello F., Schweitzer A. N., Lynch W. P., Bluestone J. A., Sharpe A. H. Loss of CTLA-4 leads to massive lymphoproliferation and fatal multiorgan tissue destruction, revealing a critical negative regulatory role of CTLA-4. Immunity. 1995 Nov;3(5):541–547. doi: 10.1016/1074-7613(95)90125-6. [DOI] [PubMed] [Google Scholar]
  26. Trotter J. L., Damico C. A., Cross A. H., Pelfrey C. M., Karr R. W., Fu X. T., McFarland H. F. HPRT mutant T-cell lines from multiple sclerosis patients recognize myelin proteolipid protein peptides. J Neuroimmunol. 1997 May;75(1-2):95–103. doi: 10.1016/s0165-5728(97)00007-6. [DOI] [PubMed] [Google Scholar]
  27. Walunas T. L., Lenschow D. J., Bakker C. Y., Linsley P. S., Freeman G. J., Green J. M., Thompson C. B., Bluestone J. A. CTLA-4 can function as a negative regulator of T cell activation. Immunity. 1994 Aug;1(5):405–413. doi: 10.1016/1074-7613(94)90071-x. [DOI] [PubMed] [Google Scholar]
  28. Weiss A., Manger B., Imboden J. Synergy between the T3/antigen receptor complex and Tp44 in the activation of human T cells. J Immunol. 1986 Aug 1;137(3):819–825. [PubMed] [Google Scholar]
  29. Windhagen A., Newcombe J., Dangond F., Strand C., Woodroofe M. N., Cuzner M. L., Hafler D. A. Expression of costimulatory molecules B7-1 (CD80), B7-2 (CD86), and interleukin 12 cytokine in multiple sclerosis lesions. J Exp Med. 1995 Dec 1;182(6):1985–1996. doi: 10.1084/jem.182.6.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Wucherpfennig K. W., Strominger J. L. Molecular mimicry in T cell-mediated autoimmunity: viral peptides activate human T cell clones specific for myelin basic protein. Cell. 1995 Mar 10;80(5):695–705. doi: 10.1016/0092-8674(95)90348-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Yi-qun Z., Joost van Neerven R. J., Kasran A., de Boer M., Ceuppens J. L. Differential requirements for co-stimulatory signals from B7 family members by resting versus recently activated memory T cells towards soluble recall antigens. Int Immunol. 1996 Jan;8(1):37–44. doi: 10.1093/intimm/8.1.37. [DOI] [PubMed] [Google Scholar]
  32. Zhang J., Markovic-Plese S., Lacet B., Raus J., Weiner H. L., Hafler D. A. Increased frequency of interleukin 2-responsive T cells specific for myelin basic protein and proteolipid protein in peripheral blood and cerebrospinal fluid of patients with multiple sclerosis. J Exp Med. 1994 Mar 1;179(3):973–984. doi: 10.1084/jem.179.3.973. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES