Abstract
Defective trafficking of the cystic fibrosis transmembrane conductance regulator (CFTR) is the most common cause of cystic fibrosis. In chloride-secreting epithelia, it is well established that CFTR localizes to intracellular organelles and to apical membranes. However, it is controversial whether secretagogues regulate the trafficking of CFTR. To investigate whether acute hormonal stimulation of chloride secretion is coupled to the trafficking of CFTR, we used the intact shark rectal gland, a model tissue in which salt secretion is dynamically regulated and both chloride secretion and cellular CFTR immunofluorescence can be quantified in parallel. In rectal glands perfused under basal conditions without secretagogues, Cl- secretion was 151+/-65 microeq/h/g. Vasoactive intestinal peptide (VIP), forskolin, and genistein led to 10-, 6-, and 4-fold increases in Cl- secretion. In basal glands, quantitative confocal microscopy revealed CFTR immunofluorescence extending from the apical membrane deeply into the cell (7.28+/-0.35 micron). During stimulation with secretagogues, apical extension of CFTR immunofluorescence into the cell was reduced significantly to 3.24+/-0.08 micron by VIP, 4.08+/-0.13 by forskolin, and 3.19+/-0.1 by genistein (P < 0.001). Moreover, the peak intensity of CFTR fluorescence shifted towards the apical membrane (peak fluorescence 2.5+/-0.13 micron basal vs. 1.51+/-0.06, 1.77+/-0.1, and 1.38+/-0.05 for VIP, forskolin, and genistein; all P < 0.001). The increase in both Cl- secretion and apical CFTR trafficking reversed to basal values after removal of VIP. These data provide the first quantitative morphological evidence for acute hormonal regulation of CFTR trafficking in an intact epithelial tissue.
Full Text
The Full Text of this article is available as a PDF (654.1 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bradbury N. A., Cohn J. A., Venglarik C. J., Bridges R. J. Biochemical and biophysical identification of cystic fibrosis transmembrane conductance regulator chloride channels as components of endocytic clathrin-coated vesicles. J Biol Chem. 1994 Mar 18;269(11):8296–8302. [PubMed] [Google Scholar]
- Bradbury N. A., Jilling T., Berta G., Sorscher E. J., Bridges R. J., Kirk K. L. Regulation of plasma membrane recycling by CFTR. Science. 1992 Apr 24;256(5056):530–532. doi: 10.1126/science.1373908. [DOI] [PubMed] [Google Scholar]
- Brown D., Gluck S., Hartwig J. Structure of the novel membrane-coating material in proton-secreting epithelial cells and identification as an H+ATPase. J Cell Biol. 1987 Oct;105(4):1637–1648. doi: 10.1083/jcb.105.4.1637. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cheng S. H., Gregory R. J., Marshall J., Paul S., Souza D. W., White G. A., O'Riordan C. R., Smith A. E. Defective intracellular transport and processing of CFTR is the molecular basis of most cystic fibrosis. Cell. 1990 Nov 16;63(4):827–834. doi: 10.1016/0092-8674(90)90148-8. [DOI] [PubMed] [Google Scholar]
- Cohn J. A., Nairn A. C., Marino C. R., Melhus O., Kole J. Characterization of the cystic fibrosis transmembrane conductance regulator in a colonocyte cell line. Proc Natl Acad Sci U S A. 1992 Mar 15;89(6):2340–2344. doi: 10.1073/pnas.89.6.2340. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cushman S. W., Wardzala L. J. Potential mechanism of insulin action on glucose transport in the isolated rat adipose cell. Apparent translocation of intracellular transport systems to the plasma membrane. J Biol Chem. 1980 May 25;255(10):4758–4762. [PubMed] [Google Scholar]
- Dalemans W., Hinnrasky J., Slos P., Dreyer D., Fuchey C., Pavirani A., Puchelle E. Immunocytochemical analysis reveals differences between the subcellular localization of normal and delta Phe508 recombinant cystic fibrosis transmembrane conductance regulator. Exp Cell Res. 1992 Jul;201(1):235–240. doi: 10.1016/0014-4827(92)90368-i. [DOI] [PubMed] [Google Scholar]
- Deen P. M., Croes H., van Aubel R. A., Ginsel L. A., van Os C. H. Water channels encoded by mutant aquaporin-2 genes in nephrogenic diabetes insipidus are impaired in their cellular routing. J Clin Invest. 1995 May;95(5):2291–2296. doi: 10.1172/JCI117920. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Denning G. M., Ostedgaard L. S., Cheng S. H., Smith A. E., Welsh M. J. Localization of cystic fibrosis transmembrane conductance regulator in chloride secretory epithelia. J Clin Invest. 1992 Jan;89(1):339–349. doi: 10.1172/JCI115582. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Devor D. C., Forrest J. N., Jr, Suggs W. K., Frizzell R. A. cAMP-activated Cl- channels in primary cultures of spiny dogfish (Squalus acanthias) rectal gland. Am J Physiol. 1995 Jan;268(1 Pt 1):C70–C79. doi: 10.1152/ajpcell.1995.268.1.C70. [DOI] [PubMed] [Google Scholar]
- Dho S., Grinstein S., Foskett J. K. Plasma membrane recycling in CFTR-expressing CHO cells. Biochim Biophys Acta. 1993 Nov 25;1225(1):78–82. doi: 10.1016/0925-4439(93)90125-k. [DOI] [PubMed] [Google Scholar]
- Eveloff J., Kinne R., Kinne-Saffran E., Murer H., Silva P., Epstein F. H., Stoff J., Kinter W. B. Coupled sodium and chloride transport into plasma membrane vesicles prepared from dogfish rectal gland. Pflugers Arch. 1978 Dec 28;378(2):87–92. doi: 10.1007/BF00584439. [DOI] [PubMed] [Google Scholar]
- Forrest J. N., Jr Cellular and molecular biology of chloride secretion in the shark rectal gland: regulation by adenosine receptors. Kidney Int. 1996 Jun;49(6):1557–1562. doi: 10.1038/ki.1996.224. [DOI] [PubMed] [Google Scholar]
- French P. J., van Doorninck J. H., Peters R. H., Verbeek E., Ameen N. A., Marino C. R., de Jonge H. R., Bijman J., Scholte B. J. A delta F508 mutation in mouse cystic fibrosis transmembrane conductance regulator results in a temperature-sensitive processing defect in vivo. J Clin Invest. 1996 Sep 15;98(6):1304–1312. doi: 10.1172/JCI118917. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Illek B., Fischer H., Machen T. E. Alternate stimulation of apical CFTR by genistein in epithelia. Am J Physiol. 1996 Jan;270(1 Pt 1):C265–C275. doi: 10.1152/ajpcell.1996.270.1.C265. [DOI] [PubMed] [Google Scholar]
- Illek B., Fischer H., Santos G. F., Widdicombe J. H., Machen T. E., Reenstra W. W. cAMP-independent activation of CFTR Cl channels by the tyrosine kinase inhibitor genistein. Am J Physiol. 1995 Apr;268(4 Pt 1):C886–C893. doi: 10.1152/ajpcell.1995.268.4.C886. [DOI] [PubMed] [Google Scholar]
- Kachadorian W. A., Levine S. D., Wade J. B., Di Scala V. A., Hays R. M. Relationship of aggregated intramembranous particles to water permeability in vasopressin-treated toad urinary bladder. J Clin Invest. 1977 Mar;59(3):576–581. doi: 10.1172/JCI108673. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kartner N., Augustinas O., Jensen T. J., Naismith A. L., Riordan J. R. Mislocalization of delta F508 CFTR in cystic fibrosis sweat gland. Nat Genet. 1992 Aug;1(5):321–327. doi: 10.1038/ng0892-321. [DOI] [PubMed] [Google Scholar]
- Kelley G. G., Aassar O. S., Forrest J. N., Jr Endogenous adenosine is an autacoid feedback inhibitor of chloride transport in the shark rectal gland. J Clin Invest. 1991 Dec;88(6):1933–1939. doi: 10.1172/JCI115517. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kelley G. G., Poeschla E. M., Barron H. V., Forrest J. N., Jr A1 adenosine receptors inhibit chloride transport in the shark rectal gland. Dissociation of inhibition and cyclic AMP. J Clin Invest. 1990 May;85(5):1629–1636. doi: 10.1172/JCI114614. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kerem B., Rommens J. M., Buchanan J. A., Markiewicz D., Cox T. K., Chakravarti A., Buchwald M., Tsui L. C. Identification of the cystic fibrosis gene: genetic analysis. Science. 1989 Sep 8;245(4922):1073–1080. doi: 10.1126/science.2570460. [DOI] [PubMed] [Google Scholar]
- Kono T., Suzuki K., Dansey L. E., Robinson F. W., Blevins T. L. Energy-dependent and protein synthesis-independent recycling of the insulin-sensitive glucose transport mechanism in fat cells. J Biol Chem. 1981 Jun 25;256(12):6400–6407. [PubMed] [Google Scholar]
- Kozak M. Compilation and analysis of sequences upstream from the translational start site in eukaryotic mRNAs. Nucleic Acids Res. 1984 Jan 25;12(2):857–872. doi: 10.1093/nar/12.2.857. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lehrich R. W., Forrest J. N., Jr Tyrosine phosphorylation is a novel pathway for regulation of chloride secretion in shark rectal gland. Am J Physiol. 1995 Oct;269(4 Pt 2):F594–F600. doi: 10.1152/ajprenal.1995.269.4.F594. [DOI] [PubMed] [Google Scholar]
- Lytle C., Forbush B., 3rd Na-K-Cl cotransport in the shark rectal gland. II. Regulation in isolated tubules. Am J Physiol. 1992 Apr;262(4 Pt 1):C1009–C1017. doi: 10.1152/ajpcell.1992.262.4.C1009. [DOI] [PubMed] [Google Scholar]
- Lytle C., Forbush B., 3rd The Na-K-Cl cotransport protein of shark rectal gland. II. Regulation by direct phosphorylation. J Biol Chem. 1992 Dec 15;267(35):25438–25443. [PubMed] [Google Scholar]
- Marino C. R., Matovcik L. M., Gorelick F. S., Cohn J. A. Localization of the cystic fibrosis transmembrane conductance regulator in pancreas. J Clin Invest. 1991 Aug;88(2):712–716. doi: 10.1172/JCI115358. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Marshall J., Martin K. A., Picciotto M., Hockfield S., Nairn A. C., Kaczmarek L. K. Identification and localization of a dogfish homolog of human cystic fibrosis transmembrane conductance regulator. J Biol Chem. 1991 Nov 25;266(33):22749–22754. [PubMed] [Google Scholar]
- Prince L. S., Tousson A., Marchase R. B. Cell surface labeling of CFTR in T84 cells. Am J Physiol. 1993 Feb;264(2 Pt 1):C491–C498. doi: 10.1152/ajpcell.1993.264.2.C491. [DOI] [PubMed] [Google Scholar]
- Reenstra W. W., Yurko-Mauro K., Dam A., Raman S., Shorten S. CFTR chloride channel activation by genistein: the role of serine/threonine protein phosphatases. Am J Physiol. 1996 Aug;271(2 Pt 1):C650–C657. doi: 10.1152/ajpcell.1996.271.2.C650. [DOI] [PubMed] [Google Scholar]
- Santos G. F., Reenstra W. W. Activation of the cystic fibrosis transmembrane regulator by cyclic AMP is not correlated with inhibition of endocytosis. Biochim Biophys Acta. 1994 Oct 12;1195(1):96–102. doi: 10.1016/0005-2736(94)90014-0. [DOI] [PubMed] [Google Scholar]
- Schwiebert E. M., Gesek F., Ercolani L., Wjasow C., Gruenert D. C., Karlson K., Stanton B. A. Heterotrimeric G proteins, vesicle trafficking, and CFTR Cl- channels. Am J Physiol. 1994 Jul;267(1 Pt 1):C272–C281. doi: 10.1152/ajpcell.1994.267.1.C272. [DOI] [PubMed] [Google Scholar]
- Seamon K. B., Daly J. W. Forskolin: its biological and chemical properties. Adv Cyclic Nucleotide Protein Phosphorylation Res. 1986;20:1–150. [PubMed] [Google Scholar]
- Sears C. L., Firoozmand F., Mellander A., Chambers F. G., Eromar I. G., Bot A. G., Scholte B., De Jonge H. R., Donowitz M. Genistein and tyrphostin 47 stimulate CFTR-mediated Cl- secretion in T84 cell monolayers. Am J Physiol. 1995 Dec;269(6 Pt 1):G874–G882. doi: 10.1152/ajpgi.1995.269.6.G874. [DOI] [PubMed] [Google Scholar]
- Silva P., Solomon R. J., Epstein F. H. The rectal gland of Squalus acanthias: a model for the transport of chloride. Kidney Int. 1996 Jun;49(6):1552–1556. doi: 10.1038/ki.1996.223. [DOI] [PubMed] [Google Scholar]
- Sorscher E. J., Fuller C. M., Bridges R. J., Tousson A., Marchase R. B., Brinkley B. R., Frizzell R. A., Benos D. J. Identification of a membrane protein from T84 cells using antibodies made against a DIDS-binding peptide. Am J Physiol. 1992 Jan;262(1 Pt 1):C136–C147. doi: 10.1152/ajpcell.1992.262.1.C136. [DOI] [PubMed] [Google Scholar]
- Stoff J. S., Rosa R., Hallac R., Silva P., Epstein F. H. Hormonal regulation of active chloride transport in the dogfish rectal gland. Am J Physiol. 1979 Aug;237(2):F138–F144. doi: 10.1152/ajprenal.1979.237.2.F138. [DOI] [PubMed] [Google Scholar]
- Takahashi A., Watkins S. C., Howard M., Frizzell R. A. CFTR-dependent membrane insertion is linked to stimulation of the CFTR chloride conductance. Am J Physiol. 1996 Dec;271(6 Pt 1):C1887–C1894. doi: 10.1152/ajpcell.1996.271.6.C1887. [DOI] [PubMed] [Google Scholar]
- Tousson A., Fuller C. M., Benos D. J. Apical recruitment of CFTR in T-84 cells is dependent on cAMP and microtubules but not Ca2+ or microfilaments. J Cell Sci. 1996 Jun;109(Pt 6):1325–1334. doi: 10.1242/jcs.109.6.1325. [DOI] [PubMed] [Google Scholar]
- Webster P., Vanacore L., Nairn A. C., Marino C. R. Subcellular localization of CFTR to endosomes in a ductal epithelium. Am J Physiol. 1994 Aug;267(2 Pt 1):C340–C348. doi: 10.1152/ajpcell.1994.267.2.C340. [DOI] [PubMed] [Google Scholar]