Abstract
Mechanisms that regulate endothelial nitric oxide synthase (eNOS) expression in normal and hypoxic pulmonary circulation are poorly understood. Lung eNOS expression is increased after chronic hypoxic pulmonary hypertension in rats, but whether this increase is due to altered hemodynamics or to hypoxia is unknown. Therefore, to determine the effect of blood flow changes on eNOS expression in the normal pulmonary circulation, and to determine whether the increase in eNOS expression after chronic hypoxia is caused by hemodynamic changes or low oxygen tension, we compared eNOS expression in the left and right lungs of normoxic and chronically hypoxic rats with surgical stenosis of the left pulmonary artery (LPA). LPA stenosis in normoxic rats reduced blood flow to the left lung from 9.8+/-0.9 to 0.8+/-0.4 ml/100 mg/min (sham surgery controls vs. LPA stenosis, P < 0.05), but there was not a significant increase in right lung blood flow. When compared with the right lung, eNOS protein and mRNA content in the left lung was decreased by 32+/-7 and 54+/-13%, respectively (P < 0.05), and right lung eNOS protein content was unchanged. After 3 wk of hypoxia, LPA stenosis reduced blood flow to the left lung from 5.8+/-0.6 to 1.5+/-0.4 ml/100 mg/min, and increased blood flow to the right lung from 5.8+/-0.5 to 10.0+/-1.4 ml/ 100 mg/min (sham surgery controls vs. LPA stenosis, P < 0.05). Despite reduced flow and pressure to the left lung and increased flow and pressure to the right lung, left and right lung eNOS protein and mRNA contents were not different. There were also no differences in lung eNOS protein levels when compared with chronically hypoxic sham surgery controls (P > 0.05). We conclude that reduction of pulmonary blood flow decreases eNOS mRNA and protein expression in normoxic adult rat lungs, and that hypoxia increases eNOS expression independently of changes in hemodynamics. These findings demonstrate that hemodynamic forces maintain eNOS content in the normoxic pulmonary circulation of the adult rat, and suggest that chronic hypoxia increases eNOS expression independently of changes in hemodynamics.
Full Text
The Full Text of this article is available as a PDF (7.8 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Crawley D. E., Liu S. F., Evans T. W., Barnes P. J. Inhibitory role of endothelium-derived relaxing factor in rat and human pulmonary arteries. Br J Pharmacol. 1990 Sep;101(1):166–170. doi: 10.1111/j.1476-5381.1990.tb12107.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Förstermann U., Kleinert H. Nitric oxide synthase: expression and expressional control of the three isoforms. Naunyn Schmiedebergs Arch Pharmacol. 1995 Oct;352(4):351–364. doi: 10.1007/BF00172772. [DOI] [PubMed] [Google Scholar]
- Griendling K. K., Alexander R. W. Endothelial control of the cardiovascular system: recent advances. FASEB J. 1996 Feb;10(2):283–292. doi: 10.1096/fasebj.10.2.8641561. [DOI] [PubMed] [Google Scholar]
- Heymann M. A., Payne B. D., Hoffman J. I., Rudolph A. M. Blood flow measurements with radionuclide-labeled particles. Prog Cardiovasc Dis. 1977 Jul-Aug;20(1):55–79. doi: 10.1016/s0033-0620(77)80005-4. [DOI] [PubMed] [Google Scholar]
- Isaacson T. C., Hampl V., Weir E. K., Nelson D. P., Archer S. L. Increased endothelium-derived NO in hypertensive pulmonary circulation of chronically hypoxic rats. J Appl Physiol (1985) 1994 Feb;76(2):933–940. doi: 10.1152/jappl.1994.76.2.933. [DOI] [PubMed] [Google Scholar]
- Le Cras T. D., Xue C., Rengasamy A., Johns R. A. Chronic hypoxia upregulates endothelial and inducible NO synthase gene and protein expression in rat lung. Am J Physiol. 1996 Jan;270(1 Pt 1):L164–L170. doi: 10.1152/ajplung.1996.270.1.L164. [DOI] [PubMed] [Google Scholar]
- Moncada S., Higgs E. A. Molecular mechanisms and therapeutic strategies related to nitric oxide. FASEB J. 1995 Oct;9(13):1319–1330. [PubMed] [Google Scholar]
- Nadaud S., Philippe M., Arnal J. F., Michel J. B., Soubrier F. Sustained increase in aortic endothelial nitric oxide synthase expression in vivo in a model of chronic high blood flow. Circ Res. 1996 Oct;79(4):857–863. doi: 10.1161/01.res.79.4.857. [DOI] [PubMed] [Google Scholar]
- Oka M., Hasunuma K., Webb S. A., Stelzner T. J., Rodman D. M., McMurtry I. F. EDRF suppresses an unidentified vasoconstrictor mechanism in hypertensive rat lungs. Am J Physiol. 1993 Jun;264(6 Pt 1):L587–L597. doi: 10.1152/ajplung.1993.264.6.L587. [DOI] [PubMed] [Google Scholar]
- Pollock J. S., Förstermann U., Mitchell J. A., Warner T. D., Schmidt H. H., Nakane M., Murad F. Purification and characterization of particulate endothelium-derived relaxing factor synthase from cultured and native bovine aortic endothelial cells. Proc Natl Acad Sci U S A. 1991 Dec 1;88(23):10480–10484. doi: 10.1073/pnas.88.23.10480. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rabinovitch M., Konstam M. A., Gamble W. J., Papanicolaou N., Aronovitz M. J., Treves S., Reid L. Changes in pulmonary blood flow affect vascular response to chronic hypoxia in rats. Circ Res. 1983 Apr;52(4):432–441. doi: 10.1161/01.res.52.4.432. [DOI] [PubMed] [Google Scholar]
- Ranjan V., Xiao Z., Diamond S. L. Constitutive NOS expression in cultured endothelial cells is elevated by fluid shear stress. Am J Physiol. 1995 Aug;269(2 Pt 2):H550–H555. doi: 10.1152/ajpheart.1995.269.2.H550. [DOI] [PubMed] [Google Scholar]
- Resta T. C., Gonzales R. J., Dail W. G., Sanders T. C., Walker B. R. Selective upregulation of arterial endothelial nitric oxide synthase in pulmonary hypertension. Am J Physiol. 1997 Feb;272(2 Pt 2):H806–H813. doi: 10.1152/ajpheart.1997.272.2.H806. [DOI] [PubMed] [Google Scholar]
- Roos C. M., Frank D. U., Xue C., Johns R. A., Rich G. F. Chronic inhaled nitric oxide: effects on pulmonary vascular endothelial function and pathology in rats. J Appl Physiol (1985) 1996 Jan;80(1):252–260. doi: 10.1152/jappl.1996.80.1.252. [DOI] [PubMed] [Google Scholar]
- Sessa W. C., Pritchard K., Seyedi N., Wang J., Hintze T. H. Chronic exercise in dogs increases coronary vascular nitric oxide production and endothelial cell nitric oxide synthase gene expression. Circ Res. 1994 Feb;74(2):349–353. doi: 10.1161/01.res.74.2.349. [DOI] [PubMed] [Google Scholar]
- Shaul P. W., North A. J., Brannon T. S., Ujiie K., Wells L. B., Nisen P. A., Lowenstein C. J., Snyder S. H., Star R. A. Prolonged in vivo hypoxia enhances nitric oxide synthase type I and type III gene expression in adult rat lung. Am J Respir Cell Mol Biol. 1995 Aug;13(2):167–174. doi: 10.1165/ajrcmb.13.2.7542896. [DOI] [PubMed] [Google Scholar]
- Stamler J. S., Loh E., Roddy M. A., Currie K. E., Creager M. A. Nitric oxide regulates basal systemic and pulmonary vascular resistance in healthy humans. Circulation. 1994 May;89(5):2035–2040. doi: 10.1161/01.cir.89.5.2035. [DOI] [PubMed] [Google Scholar]
- Stevens T., Morris K., McMurtry I. F., Zamora M., Tucker A. Pulmonary and systemic vascular responsiveness to TNF-alpha in conscious rats. J Appl Physiol (1985) 1993 Apr;74(4):1905–1910. doi: 10.1152/jappl.1993.74.4.1905. [DOI] [PubMed] [Google Scholar]
- Villamor E., Le Cras T. D., Horan M. P., Halbower A. C., Tuder R. M., Abman S. H. Chronic intrauterine pulmonary hypertension impairs endothelial nitric oxide synthase in the ovine fetus. Am J Physiol. 1997 May;272(5 Pt 1):L1013–L1020. doi: 10.1152/ajplung.1997.272.5.L1013. [DOI] [PubMed] [Google Scholar]