Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1998 Feb 15;101(4):847–854. doi: 10.1172/JCI915

Genetic predisposition to the metabolism of irinotecan (CPT-11). Role of uridine diphosphate glucuronosyltransferase isoform 1A1 in the glucuronidation of its active metabolite (SN-38) in human liver microsomes.

L Iyer 1, C D King 1, P F Whitington 1, M D Green 1, S K Roy 1, T R Tephly 1, B L Coffman 1, M J Ratain 1
PMCID: PMC508633  PMID: 9466980

Abstract

Irinotecan (CPT-11) is a promising antitumor agent, recently approved for use in patients with metastatic colorectal cancer. Its active metabolite, SN-38, is glucuronidated by hepatic uridine diphosphate glucuronosyltransferases (UGTs). The major dose-limiting toxicity of irinotecan therapy is diarrhea, which is believed to be secondary to the biliary excretion of SN-38, the extent of which is determined by SN-38 glucuronidation. The purpose of this study was to identify the specific isoform of UGT involved in SN-38 glucuronidation. In vitro glucuronidation of SN-38 was screened in hepatic microsomes from normal rats (n = 4), normal humans (n = 25), Gunn rats (n = 3), and patients (n = 4) with Crigler-Najjar type I (CN-I) syndrome. A wide intersubject variability in in vitro SN-38 glucuronide formation rates was found in humans. Gunn rats and CN-I patients lacked SN-38 glucuronidating activity, indicating the role of UGT1 isoform in SN-38 glucuronidation. A significant correlation was observed between SN-38 and bilirubin glucuronidation (r = 0.89; P = 0.001), whereas there was a poor relationship between para-nitrophenol and SN-38 glucuronidation (r = 0.08; P = 0.703). Intact SN-38 glucuronidation was observed only in HK293 cells transfected with the UGT1A1 isozyme. These results demonstrate that UGT1A1 is the isoform responsible for SN-38 glucuronidation. These findings indicate a genetic predisposition to the metabolism of irinotecan, suggesting that patients with low UGT1A1 activity, such as those with Gilbert's syndrome, may be at an increased risk for irinotecan toxicity.

Full Text

The Full Text of this article is available as a PDF (191.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Araki E., Ishikawa M., Iigo M., Koide T., Itabashi M., Hoshi A. Relationship between development of diarrhea and the concentration of SN-38, an active metabolite of CPT-11, in the intestine and the blood plasma of athymic mice following intraperitoneal administration of CPT-11. Jpn J Cancer Res. 1993 Jun;84(6):697–702. doi: 10.1111/j.1349-7006.1993.tb02031.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Atsumi R., Suzuki W., Hakusui H. Identification of the metabolites of irinotecan, a new derivative of camptothecin, in rat bile and its biliary excretion. Xenobiotica. 1991 Sep;21(9):1159–1169. doi: 10.3109/00498259109039556. [DOI] [PubMed] [Google Scholar]
  3. Battaglia E., Senay C., Fournel-Gigleux S., Herber R., Siest G., Magdalou J. The chemical modification of human liver UDP-glucuronosyltransferase UGT1*6 reveals the involvement of a carboxyl group in catalysis. FEBS Lett. 1994 Jun 13;346(2-3):146–150. doi: 10.1016/0014-5793(94)00453-6. [DOI] [PubMed] [Google Scholar]
  4. Bosma P. J., Chowdhury J. R., Bakker C., Gantla S., de Boer A., Oostra B. A., Lindhout D., Tytgat G. N., Jansen P. L., Oude Elferink R. P. The genetic basis of the reduced expression of bilirubin UDP-glucuronosyltransferase 1 in Gilbert's syndrome. N Engl J Med. 1995 Nov 2;333(18):1171–1175. doi: 10.1056/NEJM199511023331802. [DOI] [PubMed] [Google Scholar]
  5. Bosma P. J., Chowdhury J. R., Huang T. J., Lahiri P., Elferink R. P., Van Es H. H., Lederstein M., Whitington P. F., Jansen P. L., Chowdhury N. R. Mechanisms of inherited deficiencies of multiple UDP-glucuronosyltransferase isoforms in two patients with Crigler-Najjar syndrome, type I. FASEB J. 1992 Jul;6(10):2859–2863. doi: 10.1096/fasebj.6.10.1634050. [DOI] [PubMed] [Google Scholar]
  6. Bosma P. J., Seppen J., Goldhoorn B., Bakker C., Oude Elferink R. P., Chowdhury J. R., Chowdhury N. R., Jansen P. L. Bilirubin UDP-glucuronosyltransferase 1 is the only relevant bilirubin glucuronidating isoform in man. J Biol Chem. 1994 Jul 8;269(27):17960–17964. [PubMed] [Google Scholar]
  7. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  8. Burchell B., Brierley C. H., Rance D. Specificity of human UDP-glucuronosyltransferases and xenobiotic glucuronidation. Life Sci. 1995;57(20):1819–1831. doi: 10.1016/0024-3205(95)02073-r. [DOI] [PubMed] [Google Scholar]
  9. Burchell B., Nebert D. W., Nelson D. R., Bock K. W., Iyanagi T., Jansen P. L., Lancet D., Mulder G. J., Chowdhury J. R., Siest G. The UDP glucuronosyltransferase gene superfamily: suggested nomenclature based on evolutionary divergence. DNA Cell Biol. 1991 Sep;10(7):487–494. doi: 10.1089/dna.1991.10.487. [DOI] [PubMed] [Google Scholar]
  10. CRIGLER J. F., Jr, NAJJAR V. A. Congenital familial nonhemolytic jaundice with kernicterus. Pediatrics. 1952 Aug;10(2):169–180. [PubMed] [Google Scholar]
  11. Carulli N., Ponz de Leon M., Mauro E., Manenti F., Ferrari A. Alteration of drug metabolism in Gilbert's syndrome. Gut. 1976 Aug;17(8):581–587. doi: 10.1136/gut.17.8.581. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Chen C. A., Okayama H. Calcium phosphate-mediated gene transfer: a highly efficient transfection system for stably transforming cells with plasmid DNA. Biotechniques. 1988 Jul-Aug;6(7):632–638. [PubMed] [Google Scholar]
  13. Chowdhury J. R., Kondapalli R., Chowdhury N. R. Gunn rat: a model for inherited deficiency of bilirubin glucuronidation. Adv Vet Sci Comp Med. 1993;37:149–173. [PubMed] [Google Scholar]
  14. Coffman B. L., Green M. D., King C. D., Tephly T. R. Cloning and stable expression of a cDNA encoding a rat liver UDP-glucuronosyltransferase (UDP-glucuronosyltransferase 1.1) that catalyzes the glucuronidation of opioids and bilirubin. Mol Pharmacol. 1995 Jun;47(6):1101–1105. [PubMed] [Google Scholar]
  15. Coffman B. L., Rios G. R., King C. D., Tephly T. R. Human UGT2B7 catalyzes morphine glucuronidation. Drug Metab Dispos. 1997 Jan;25(1):1–4. [PubMed] [Google Scholar]
  16. Fevery J. Pathogenesis of Gilbert's syndrome. Eur J Clin Invest. 1981 Dec;11(6):417–418. doi: 10.1111/j.1365-2362.1981.tb02006.x. [DOI] [PubMed] [Google Scholar]
  17. Green M. D., Bishop W. P., Tephly T. R. Expressed human UGT1.4 protein catalyzes the formation of quaternary ammonium-linked glucuronides. Drug Metab Dispos. 1995 Mar;23(3):299–302. [PubMed] [Google Scholar]
  18. Green M. D., Oturu E. M., Tephly T. R. Stable expression of a human liver UDP-glucuronosyltransferase (UGT2B15) with activity toward steroid and xenobiotic substrates. Drug Metab Dispos. 1994 Sep-Oct;22(5):799–805. [PubMed] [Google Scholar]
  19. Gupta E., Lestingi T. M., Mick R., Ramirez J., Vokes E. E., Ratain M. J. Metabolic fate of irinotecan in humans: correlation of glucuronidation with diarrhea. Cancer Res. 1994 Jul 15;54(14):3723–3725. [PubMed] [Google Scholar]
  20. Gupta E., Mick R., Ramirez J., Wang X., Lestingi T. M., Vokes E. E., Ratain M. J. Pharmacokinetic and pharmacodynamic evaluation of the topoisomerase inhibitor irinotecan in cancer patients. J Clin Oncol. 1997 Apr;15(4):1502–1510. doi: 10.1200/JCO.1997.15.4.1502. [DOI] [PubMed] [Google Scholar]
  21. Gupta E., Wang X., Ramirez J., Ratain M. J. Modulation of glucuronidation of SN-38, the active metabolite of irinotecan, by valproic acid and phenobarbital. Cancer Chemother Pharmacol. 1997;39(5):440–444. doi: 10.1007/s002800050595. [DOI] [PubMed] [Google Scholar]
  22. Harding D., Fournel-Gigleux S., Jackson M. R., Burchell B. Cloning and substrate specificity of a human phenol UDP-glucuronosyltransferase expressed in COS-7 cells. Proc Natl Acad Sci U S A. 1988 Nov;85(22):8381–8385. doi: 10.1073/pnas.85.22.8381. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Haumont M., Magdalou J., Lafaurie C., Ziegler J. M., Siest G., Colin J. N. Phenobarbital inducible UDP-glucuronosyltransferase is responsible for glucuronidation of 3'-azido-3'-deoxythymidine: characterization of the enzyme in human and rat liver microsomes. Arch Biochem Biophys. 1990 Sep;281(2):264–270. doi: 10.1016/0003-9861(90)90442-2. [DOI] [PubMed] [Google Scholar]
  24. Herber R., Magdalou J., Haumont M., Bidault R., van Es H., Siest G. Glucuronidation of 3'-azido-3'-deoxythymidine in human liver microsomes: enzyme inhibition by drugs and steroid hormones. Biochim Biophys Acta. 1992 Jun 9;1139(1-2):20–24. doi: 10.1016/0925-4439(92)90077-z. [DOI] [PubMed] [Google Scholar]
  25. Houghton P. J., Cheshire P. J., Hallman J. C., Bissery M. C., Mathieu-Boué A., Houghton J. A. Therapeutic efficacy of the topoisomerase I inhibitor 7-ethyl-10-(4-[1-piperidino]-1-piperidino)-carbonyloxy-camptothecin against human tumor xenografts: lack of cross-resistance in vivo in tumors with acquired resistance to the topoisomerase I inhibitor 9-dimethylaminomethyl-10-hydroxycamptothecin. Cancer Res. 1993 Jun 15;53(12):2823–2829. [PubMed] [Google Scholar]
  26. Jin C., Miners J. O., Lillywhite K. J., Mackenzie P. I. Complementary deoxyribonucleic acid cloning and expression of a human liver uridine diphosphate-glucuronosyltransferase glucuronidating carboxylic acid-containing drugs. J Pharmacol Exp Ther. 1993 Jan;264(1):475–479. [PubMed] [Google Scholar]
  27. Kaneda N., Nagata H., Furuta T., Yokokura T. Metabolism and pharmacokinetics of the camptothecin analogue CPT-11 in the mouse. Cancer Res. 1990 Mar 15;50(6):1715–1720. [PubMed] [Google Scholar]
  28. Kawato Y., Aonuma M., Hirota Y., Kuga H., Sato K. Intracellular roles of SN-38, a metabolite of the camptothecin derivative CPT-11, in the antitumor effect of CPT-11. Cancer Res. 1991 Aug 15;51(16):4187–4191. [PubMed] [Google Scholar]
  29. King C. D., Green M. D., Rios G. R., Coffman B. L., Owens I. S., Bishop W. P., Tephly T. R. The glucuronidation of exogenous and endogenous compounds by stably expressed rat and human UDP-glucuronosyltransferase 1.1. Arch Biochem Biophys. 1996 Aug 1;332(1):92–100. doi: 10.1006/abbi.1996.0320. [DOI] [PubMed] [Google Scholar]
  30. King C. D., Rios G. R., Green M. D., MacKenzie P. I., Tephly T. R. Comparison of stably expressed rat UGT1.1 and UGT2B1 in the glucuronidation of opioid compounds. Drug Metab Dispos. 1997 Feb;25(2):251–255. [PubMed] [Google Scholar]
  31. Kunimoto T., Nitta K., Tanaka T., Uehara N., Baba H., Takeuchi M., Yokokura T., Sawada S., Miyasaka T., Mutai M. Antitumor activity of 7-ethyl-10-[4-(1-piperidino)-1-piperidino]carbonyloxy-camptothec in, a novel water-soluble derivative of camptothecin, against murine tumors. Cancer Res. 1987 Nov 15;47(22):5944–5947. [PubMed] [Google Scholar]
  32. Matern H., Heinemann H., Matern S. Radioassay of UDP-glucuronosyltransferase activities toward endogenous substrates using labeled UDP-glucuronic acid and an organic solvent extraction procedure. Anal Biochem. 1994 Jun;219(2):182–188. doi: 10.1006/abio.1994.1255. [DOI] [PubMed] [Google Scholar]
  33. Matsui M., Watanabe H. K. Developmental alteration of hepatic UDP-glucuronosyltransferase and sulphotransferase towards androsterone and 4-nitrophenol in Wistar rats. Biochem J. 1982 May 15;204(2):441–447. doi: 10.1042/bj2040441. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Monaghan G., Foster B., Jurima-Romet M., Hume R., Burchell B. UGT1*1 genotyping in a Canadian Inuit population. Pharmacogenetics. 1997 Apr;7(2):153–156. doi: 10.1097/00008571-199704000-00010. [DOI] [PubMed] [Google Scholar]
  35. Monaghan G., Ryan M., Seddon R., Hume R., Burchell B. Genetic variation in bilirubin UPD-glucuronosyltransferase gene promoter and Gilbert's syndrome. Lancet. 1996 Mar 2;347(9001):578–581. doi: 10.1016/s0140-6736(96)91273-8. [DOI] [PubMed] [Google Scholar]
  36. Purba H. S., Maggs J. L., Orme M. L., Back D. J., Park B. K. The metabolism of 17 alpha-ethinyloestradiol by human liver microsomes: formation of catechol and chemically reactive metabolites. Br J Clin Pharmacol. 1987 Apr;23(4):447–453. doi: 10.1111/j.1365-2125.1987.tb03074.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Rajaonarison J. F., Lacarelle B., De Sousa G., Catalin J., Rahmani R. In vitro glucuronidation of 3'-azido-3'-deoxythymidine by human liver. Role of UDP-glucuronosyltransferase 2 form. Drug Metab Dispos. 1991 Jul-Aug;19(4):809–815. [PubMed] [Google Scholar]
  38. Ritter J. K., Crawford J. M., Owens I. S. Cloning of two human liver bilirubin UDP-glucuronosyltransferase cDNAs with expression in COS-1 cells. J Biol Chem. 1991 Jan 15;266(2):1043–1047. [PubMed] [Google Scholar]
  39. Rivory L. P., Riou J. F., Haaz M. C., Sable S., Vuilhorgne M., Commerçon A., Pond S. M., Robert J. Identification and properties of a major plasma metabolite of irinotecan (CPT-11) isolated from the plasma of patients. Cancer Res. 1996 Aug 15;56(16):3689–3694. [PubMed] [Google Scholar]
  40. Rothenberg M. L., Eckardt J. R., Kuhn J. G., Burris H. A., 3rd, Nelson J., Hilsenbeck S. G., Rodriguez G. I., Thurman A. M., Smith L. S., Eckhardt S. G. Phase II trial of irinotecan in patients with progressive or rapidly recurrent colorectal cancer. J Clin Oncol. 1996 Apr;14(4):1128–1135. doi: 10.1200/JCO.1996.14.4.1128. [DOI] [PubMed] [Google Scholar]
  41. Roy S. K., Korzekwa K. R., Gonzalez F. J., Moschel R. C., Dolan M. E. Human liver oxidative metabolism of O6-benzylguanine. Biochem Pharmacol. 1995 Oct 26;50(9):1385–1389. doi: 10.1016/0006-2952(95)02019-5. [DOI] [PubMed] [Google Scholar]
  42. Sim S. M., Back D. J., Breckenridge A. M. The effect of various drugs on the glucuronidation of zidovudine (azidothymidine; AZT) by human liver microsomes. Br J Clin Pharmacol. 1991 Jul;32(1):17–21. doi: 10.1111/j.1365-2125.1991.tb05607.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Takasuna K., Kasai Y., Kitano Y., Mori K., Kakihata K., Hirohashi M., Nomura M. [Study on the mechanisms of diarrhea induced by a new anticancer camptothecin derivative, irinotecan hydrochloride (CPT-11), in rats]. Nihon Yakurigaku Zasshi. 1995 Jun;105(6):447–460. doi: 10.1254/fpj.105.447. [DOI] [PubMed] [Google Scholar]
  44. Tephly T., Green M., Puig J., Irshaid Y. Endogenous substrates for UDP-glucuronosyltransferases. Xenobiotica. 1988 Nov;18(11):1201–1210. doi: 10.3109/00498258809042244. [DOI] [PubMed] [Google Scholar]
  45. Vassal G., Terrier-Lacombe M. J., Bissery M. C., Vénuat A. M., Gyergyay F., Bénard J., Morizet J., Boland I., Ardouin P., Bressac-de-Paillerets B. Therapeutic activity of CPT-11, a DNA-topoisomerase I inhibitor, against peripheral primitive neuroectodermal tumour and neuroblastoma xenografts. Br J Cancer. 1996 Aug;74(4):537–545. doi: 10.1038/bjc.1996.398. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Watanabe H. K., Hoskins B., Ho I. K. Selective inhibitory effect of organophosphates on UDP-glucuronyl transferase activities in rat liver microsomes. Biochem Pharmacol. 1986 Feb 1;35(3):455–460. doi: 10.1016/0006-2952(86)90219-4. [DOI] [PubMed] [Google Scholar]
  47. de Morais S. M., Uetrecht J. P., Wells P. G. Decreased glucuronidation and increased bioactivation of acetaminophen in Gilbert's syndrome. Gastroenterology. 1992 Feb;102(2):577–586. doi: 10.1016/0016-5085(92)90106-9. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES