Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1998 Feb 15;101(4):863–876. doi: 10.1172/JCI1129

Peptidergic activation of transcription and secretion in chromaffin cells. Cis and trans signaling determinants of pituitary adenylyl cyclase-activating polypeptide (PACAP).

L Taupenot 1, S K Mahata 1, H Wu 1, D T O'Connor 1
PMCID: PMC508635  PMID: 9466982

Abstract

Pituitary adenylyl cyclase-activating polypeptide (PACAP) is a potent endogenous secretagogue for chromaffin cells. Chromogranin A is the major soluble core component in secretory vesicles. Since chromogranin A is secreted along with catecholamines, we asked whether PACAP regulates expression of the chromogranin A gene in PC12 rat chromaffin cells, so as to resynthesize the just-secreted protein, and whether such biosynthetic regulation is coupled mechanistically to catecholamine secretion. PACAP activated the endogenous chromogranin A gene by four- to fivefold. Proportional results (seven- to eightfold activation) were obtained with a transfected 1,200-bp mouse chromogranin A promoter/luciferase reporter construct. A series of chromogranin A promoter 5' deletion mutant/luciferase reporter constructs narrowed down the PACAP response element to a proximal region containing the cAMP response element (CRE box), at (-71 bp)5'-TGACGTAA-3'(-64 bp). Site-directed point mutations of the CRE site suppressed PACAP-induced trans-activation of the promoter. Thus, the proximal CRE box is entirely necessary for the chromogranin A promoter response to PACAP. Transfer of the CRE box to a neutral, heterologous promoter also conferred activation by PACAP, suggesting that the CRE domain is also sufficient to mediate the transcriptional response to PACAP. Expression of a dominant-negative mutant (KCREB) of the CRE-binding factor CREB markedly diminished trans-activation of the chromogranin A promoter by PACAP. Cotransfection of expression plasmids encoding the protein kinase A inhibitor, or an inactive protein kinase A (PKA) catalytic beta subunit, inhibited both forskolin and PACAP activation of chromogranin A transcription, revealing that PACAP-induced trans-activation is highly dependent on PKA. By contrast, inhibition of protein kinase C (by chronic exposure to phorbol ester) had no effect on transcriptional activation by PACAP. The potent PACAP/vasoactive intestinal peptide (VIP) type I receptor antagonist PACAP6-38 impaired both chromogranin A transcription or catecholamine secretion triggered by PACAP38, while the PACAP/VIP type II receptor antagonist (p-Chloro-D-Phe6, Leu17)-VIP had little or no ability to antagonize the PACAP38 effect. The agonist VIP was approximately 100- to 1,000-fold less potent than PACAP in stimulating either secretion or transcription. Thus, PACAP-evoked chromogranin A transcription and catecholamine secretion are likely mediated by the PACAP/VIP type I receptor isoform. Although the calcium channel antagonists Zn2+ (100 microM), nifedipine (10 microM), or ruthenium red (10 microM), or the cytosolic calcium chelator BAPTA-AM (50 microM) each strongly impaired PACAP-induced secretion, transcriptional activation of chromogranin A remained unaltered. Therefore, we propose that PACAP signals to chromogranin A transcription through the CRE in cis, and through PKA and CREB in trans. By contrast, a pathway involving cytosolic calcium entry through L-type voltage-dependent channels is required for PACAP to evoke catecholamine secretion.

Full Text

The Full Text of this article is available as a PDF (686.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aardal S., Helle K. B., Elsayed S., Reed R. K., Serck-Hanssen G. Vasostatins, comprising the N-terminal domain of chromogranin A, suppress tension in isolated human blood vessel segments. J Neuroendocrinol. 1993 Aug;5(4):405–412. doi: 10.1111/j.1365-2826.1993.tb00501.x. [DOI] [PubMed] [Google Scholar]
  2. Adelman J. P. Proteins that interact with the pore-forming subunits of voltage-gated ion channels. Curr Opin Neurobiol. 1995 Jun;5(3):286–295. doi: 10.1016/0959-4388(95)80040-9. [DOI] [PubMed] [Google Scholar]
  3. Arimura A. Pituitary adenylate cyclase activating polypeptide (PACAP): discovery and current status of research. Regul Pept. 1992 Feb 18;37(3):287–303. [PubMed] [Google Scholar]
  4. Arimura A., Shioda S. Pituitary adenylate cyclase activating polypeptide (PACAP) and its receptors: neuroendocrine and endocrine interaction. Front Neuroendocrinol. 1995 Jan;16(1):53–88. doi: 10.1006/frne.1995.1003. [DOI] [PubMed] [Google Scholar]
  5. Babinski K., Bodart V., Roy M., De Léan A., Ong H. Pituitary adenylate-cyclase activating polypeptide (PACAP) evokes long-lasting secretion and de novo biosynthesis of bovine adrenal medullary neuropeptides. Neuropeptides. 1996 Dec;30(6):572–582. doi: 10.1016/s0143-4179(96)90041-4. [DOI] [PubMed] [Google Scholar]
  6. Boksa P., Livett B. G. Desensitization to nicotinic cholinergic agonists and K+, agents that stimulate catecholamine secretion, in isolated adrenal chromaffin cells. J Neurochem. 1984 Mar;42(3):607–617. doi: 10.1111/j.1471-4159.1984.tb02726.x. [DOI] [PubMed] [Google Scholar]
  7. Boutillier A. L., Monnier D., Koch B., Loeffler J. P. Pituitary adenyl cyclase-activating peptide: a hypophysiotropic factor that stimulates proopiomelanocortin gene transcription, and proopiomelanocortin-derived peptide secretion in corticotropic cells. Neuroendocrinology. 1994 Nov;60(5):493–502. doi: 10.1159/000126786. [DOI] [PubMed] [Google Scholar]
  8. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  9. Castellano M., Böhm M. The cardiac beta-adrenoceptor-mediated signaling pathway and its alterations in hypertensive heart disease. Hypertension. 1997 Mar;29(3):715–722. doi: 10.1161/01.hyp.29.3.715. [DOI] [PubMed] [Google Scholar]
  10. Chuang T. T., Iacovelli L., Sallese M., De Blasi A. G protein-coupled receptors: heterologous regulation of homologous desensitization and its implications. Trends Pharmacol Sci. 1996 Nov;17(11):416–421. doi: 10.1016/s0165-6147(96)10048-1. [DOI] [PubMed] [Google Scholar]
  11. Coleman D. T., Chen X., Sassaroli M., Bancroft C. Pituitary adenylate cyclase-activating polypeptide regulates prolactin promoter activity via a protein kinase A-mediated pathway that is independent of the transcriptional pathway employed by thyrotropin-releasing hormone. Endocrinology. 1996 Apr;137(4):1276–1285. doi: 10.1210/endo.137.4.8625900. [DOI] [PubMed] [Google Scholar]
  12. Daniels A. J., Williams R. J., Wright P. E. The character of the stored molecules in chromaffin granules of the adrenal medulla: a nuclear magnetic resonance study. Neuroscience. 1978;3(6):573–585. doi: 10.1016/0306-4522(78)90022-2. [DOI] [PubMed] [Google Scholar]
  13. Day R. N., Walder J. A., Maurer R. A. A protein kinase inhibitor gene reduces both basal and multihormone-stimulated prolactin gene transcription. J Biol Chem. 1989 Jan 5;264(1):431–436. [PubMed] [Google Scholar]
  14. Deutsch P. J., Sun Y. The 38-amino acid form of pituitary adenylate cyclase-activating polypeptide stimulates dual signaling cascades in PC12 cells and promotes neurite outgrowth. J Biol Chem. 1992 Mar 15;267(8):5108–5113. [PubMed] [Google Scholar]
  15. Fasciotto B. H., Trauss C. A., Greeley G. H., Cohn D. V. Parastatin (porcine chromogranin A347-419), a novel chromogranin A-derived peptide, inhibits parathyroid cell secretion. Endocrinology. 1993 Aug;133(2):461–466. doi: 10.1210/endo.133.2.8344192. [DOI] [PubMed] [Google Scholar]
  16. Gomis A., Gutierrez L. M., Sala F., Viniegra S., Reig J. A. Ruthenium red inhibits selectively chromaffin cell calcium channels. Biochem Pharmacol. 1994 Jan 20;47(2):225–231. doi: 10.1016/0006-2952(94)90010-8. [DOI] [PubMed] [Google Scholar]
  17. Gorman C. M., Moffat L. F., Howard B. H. Recombinant genomes which express chloramphenicol acetyltransferase in mammalian cells. Mol Cell Biol. 1982 Sep;2(9):1044–1051. doi: 10.1128/mcb.2.9.1044. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Greene L. A., Tischler A. S. Establishment of a noradrenergic clonal line of rat adrenal pheochromocytoma cells which respond to nerve growth factor. Proc Natl Acad Sci U S A. 1976 Jul;73(7):2424–2428. doi: 10.1073/pnas.73.7.2424. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Hasel K. W., Sutcliffe J. G. Nucleotide sequence of a cDNA coding for mouse cyclophilin. Nucleic Acids Res. 1990 Jul 11;18(13):4019–4019. doi: 10.1093/nar/18.13.4019. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Hashimoto H., Ishihara T., Shigemoto R., Mori K., Nagata S. Molecular cloning and tissue distribution of a receptor for pituitary adenylate cyclase-activating polypeptide. Neuron. 1993 Aug;11(2):333–342. doi: 10.1016/0896-6273(93)90188-w. [DOI] [PubMed] [Google Scholar]
  21. Houchi H., Oka M., Misbahuddin M., Morita K., Nakanishi A. Stimulation by vasoactive intestinal polypeptide of catecholamine synthesis in isolated bovine adrenal chromaffin cells. Possible involvement of protein kinase C. Biochem Pharmacol. 1987 May 1;36(9):1551–1554. doi: 10.1016/0006-2952(87)90125-0. [DOI] [PubMed] [Google Scholar]
  22. Iacangelo A. L., Eiden L. E. Chromogranin A: current status as a precursor for bioactive peptides and a granulogenic/sorting factor in the regulated secretory pathway. Regul Pept. 1995 Aug 22;58(3):65–88. doi: 10.1016/0167-0115(95)00069-n. [DOI] [PubMed] [Google Scholar]
  23. Iacangelo A. L., Grimes M., Eiden L. E. The bovine chromogranin A gene: structural basis for hormone regulation and generation of biologically active peptides. Mol Endocrinol. 1991 Nov;5(11):1651–1660. doi: 10.1210/mend-5-11-1651. [DOI] [PubMed] [Google Scholar]
  24. Isobe K., Nakai T., Takuwa Y. Ca(2+)-dependent stimulatory effect of pituitary adenylate cyclase-activating polypeptide on catecholamine secretion from cultured porcine adrenal medullary chromaffin cells. Endocrinology. 1993 Apr;132(4):1757–1765. doi: 10.1210/endo.132.4.8384995. [DOI] [PubMed] [Google Scholar]
  25. Isobe K., Yukimasa N., Nakai T., Takuwa Y. Pituitary adenylate cyclase-activating polypeptide induces gene expression of the catecholamine synthesizing enzymes, tyrosine hydroxylase and dopamine beta hydroxylase, through 3',5'-cyclic adenosine monophosphate- and protein kinase C-dependent mechanisms in cultured porcine adrenal medullary chromaffin cells. Neuropeptides. 1996 Apr;30(2):167–175. doi: 10.1016/s0143-4179(96)90084-0. [DOI] [PubMed] [Google Scholar]
  26. Lukas R. J., Bencherif M. Heterogeneity and regulation of nicotinic acetylcholine receptors. Int Rev Neurobiol. 1992;34:25–131. doi: 10.1016/s0074-7742(08)60097-5. [DOI] [PubMed] [Google Scholar]
  27. Lutz E. M., Sheward W. J., West K. M., Morrow J. A., Fink G., Harmar A. J. The VIP2 receptor: molecular characterisation of a cDNA encoding a novel receptor for vasoactive intestinal peptide. FEBS Lett. 1993 Nov 8;334(1):3–8. doi: 10.1016/0014-5793(93)81668-p. [DOI] [PubMed] [Google Scholar]
  28. Mahata M., Mahata S. K., Parmer R. J., O'Connor D. T. Vesicular monoamine transport inhibitors. Novel action at calcium channels to prevent catecholamine secretion. Hypertension. 1996 Sep;28(3):414–420. doi: 10.1161/01.hyp.28.3.414. [DOI] [PubMed] [Google Scholar]
  29. Mahata S. K., O'Connor D. T., Mahata M., Yoo S. H., Taupenot L., Wu H., Gill B. M., Parmer R. J. Novel autocrine feedback control of catecholamine release. A discrete chromogranin a fragment is a noncompetitive nicotinic cholinergic antagonist. J Clin Invest. 1997 Sep 15;100(6):1623–1633. doi: 10.1172/JCI119686. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Malhotra R. K., Wakade A. R. Non-cholinergic component of rat splanchnic nerves predominates at low neuronal activity and is eliminated by naloxone. J Physiol. 1987 Feb;383:639–652. doi: 10.1113/jphysiol.1987.sp016434. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Malhotra R. K., Wakade T. D., Wakade A. R. Cross-communication between acetylcholine and VIP in controlling catecholamine secretion by affecting cAMP, inositol triphosphate, protein kinase C, and calcium in rat adrenal medulla. J Neurosci. 1989 Dec;9(12):4150–4157. doi: 10.1523/JNEUROSCI.09-12-04150.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Marley P. D., Cheung C. Y., Thomson K. A., Murphy R. Activation of tyrosine hydroxylase by pituitary adenylate cyclase-activating polypeptide (PACAP-27) in bovine adrenal chromaffin cells. J Auton Nerv Syst. 1996 Sep 12;60(3):141–146. doi: 10.1016/0165-1838(96)00044-6. [DOI] [PubMed] [Google Scholar]
  33. Maurer R. A. Both isoforms of the cAMP-dependent protein kinase catalytic subunit can activate transcription of the prolactin gene. J Biol Chem. 1989 Apr 25;264(12):6870–6873. [PubMed] [Google Scholar]
  34. Miyata A., Jiang L., Stibbs H. H., Arimura A. Chemical characterization of vasoactive intestinal polypeptide-like immunoreactivity in ovine hypothalamus and intestine. Regul Pept. 1992 Mar 19;38(2):145–154. doi: 10.1016/0167-0115(92)90053-w. [DOI] [PubMed] [Google Scholar]
  35. Moller K., Sundler F. Expression of pituitary adenylate cyclase activating peptide (PACAP) and PACAP type I receptors in the rat adrenal medulla. Regul Pept. 1996 Jul 5;63(2-3):129–139. doi: 10.1016/0167-0115(96)00033-x. [DOI] [PubMed] [Google Scholar]
  36. Mouland A. J., Bevan S., White J. H., Hendy G. N. Human chromogranin A gene. Molecular cloning, structural analysis, and neuroendocrine cell-specific expression. J Biol Chem. 1994 Mar 4;269(9):6918–6926. [PubMed] [Google Scholar]
  37. O'Connor D. T. Chromogranin: widespread immunoreactivity in polypeptide hormone producing tissues and in serum. Regul Pept. 1983 Jul;6(3):263–280. doi: 10.1016/0167-0115(83)90145-3. [DOI] [PubMed] [Google Scholar]
  38. Pandol S. J., Dharmsathaphorn K., Schoeffield M. S., Vale W., Rivier J. Vasoactive intestinal peptide receptor antagonist [4Cl-D-Phe6, Leu17] VIP. Am J Physiol. 1986 Apr;250(4 Pt 1):G553–G557. doi: 10.1152/ajpgi.1986.250.4.G553. [DOI] [PubMed] [Google Scholar]
  39. Parmer R. J., Koop A. H., Handa M. T., O'Connor D. T. Molecular cloning of chromogranin A from rat pheochromocytoma cells. Hypertension. 1989 Oct;14(4):435–444. doi: 10.1161/01.hyp.14.4.435. [DOI] [PubMed] [Google Scholar]
  40. Parmer R. J., Xi X. P., Wu H. J., Helman L. J., Petz L. N. Secretory protein traffic. Chromogranin A contains a dominant targeting signal for the regulated pathway. J Clin Invest. 1993 Aug;92(2):1042–1054. doi: 10.1172/JCI116609. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Pisegna J. R., Wank S. A. Molecular cloning and functional expression of the pituitary adenylate cyclase-activating polypeptide type I receptor. Proc Natl Acad Sci U S A. 1993 Jul 1;90(13):6345–6349. doi: 10.1073/pnas.90.13.6345. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Przywara D. A., Guo X., Angelilli M. L., Wakade T. D., Wakade A. R. A non-cholinergic transmitter, pituitary adenylate cyclase-activating polypeptide, utilizes a novel mechanism to evoke catecholamine secretion in rat adrenal chromaffin cells. J Biol Chem. 1996 May 3;271(18):10545–10550. doi: 10.1074/jbc.271.18.10545. [DOI] [PubMed] [Google Scholar]
  43. Rawlings S. R., Hezareh M. Pituitary adenylate cyclase-activating polypeptide (PACAP) and PACAP/vasoactive intestinal polypeptide receptors: actions on the anterior pituitary gland. Endocr Rev. 1996 Feb;17(1):4–29. doi: 10.1210/edrv-17-1-4. [DOI] [PubMed] [Google Scholar]
  44. Rius R. A., Guidotti A., Costa E. Pituitary adenylate cyclase activating polypeptide (PACAP) potently enhances tyrosine hydroxylase (TH) expression in adrenal chromaffin cells. Life Sci. 1994;54(22):1735–1743. doi: 10.1016/0024-3205(94)00614-8. [DOI] [PubMed] [Google Scholar]
  45. Robberecht P., Gourlet P., De Neef P., Woussen-Colle M. C., Vandermeers-Piret M. C., Vandermeers A., Christophe J. Structural requirements for the occupancy of pituitary adenylate-cyclase-activating-peptide (PACAP) receptors and adenylate cyclase activation in human neuroblastoma NB-OK-1 cell membranes. Discovery of PACAP(6-38) as a potent antagonist. Eur J Biochem. 1992 Jul 1;207(1):239–246. doi: 10.1111/j.1432-1033.1992.tb17043.x. [DOI] [PubMed] [Google Scholar]
  46. Roesler W. J., Vandenbark G. R., Hanson R. W. Cyclic AMP and the induction of eukaryotic gene transcription. J Biol Chem. 1988 Jul 5;263(19):9063–9066. [PubMed] [Google Scholar]
  47. Rozansky D. J., Wu H., Tang K., Parmer R. J., O'Connor D. T. Glucocorticoid activation of chromogranin A gene expression. Identification and characterization of a novel glucocorticoid response element. J Clin Invest. 1994 Dec;94(6):2357–2368. doi: 10.1172/JCI117601. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Schadlow V. C., Barzilai N., Deutsch P. J. Regulation of gene expression in PC12 cells via an activator of dual second messengers: pituitary adenylate cyclase activating polypeptide. Mol Biol Cell. 1992 Aug;3(8):941–951. doi: 10.1091/mbc.3.8.941. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Seidah N. G., Hendy G. N., Hamelin J., Paquin J., Lazure C., Metters K. M., Rossier J., Chrétien M. Chromogranin A can act as a reversible processing enzyme inhibitor. Evidence from the inhibition of the IRCM-serine protease 1 cleavage of pro-enkephalin and ACTH at pairs of basic amino acids. FEBS Lett. 1987 Jan 26;211(2):144–150. doi: 10.1016/0014-5793(87)81425-4. [DOI] [PubMed] [Google Scholar]
  50. Simon J. P., Aunis D. Biochemistry of the chromogranin A protein family. Biochem J. 1989 Aug 15;262(1):1–13. doi: 10.1042/bj2620001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Simon J. P., Bader M. F., Aunis D. Secretion from chromaffin cells is controlled by chromogranin A-derived peptides. Proc Natl Acad Sci U S A. 1988 Mar;85(5):1712–1716. doi: 10.1073/pnas.85.5.1712. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Spengler D., Waeber C., Pantaloni C., Holsboer F., Bockaert J., Seeburg P. H., Journot L. Differential signal transduction by five splice variants of the PACAP receptor. Nature. 1993 Sep 9;365(6442):170–175. doi: 10.1038/365170a0. [DOI] [PubMed] [Google Scholar]
  53. Tabarin A., Chen D., Håkanson R., Sundler F. Pituitary adenylate cyclase-activating peptide in the adrenal gland of mammals: distribution, characterization and responses to drugs. Neuroendocrinology. 1994 Feb;59(2):113–119. doi: 10.1159/000126647. [DOI] [PubMed] [Google Scholar]
  54. Tanaka K., Shibuya I., Nagamoto T., Yamashita H., Kanno T. Pituitary adenylate cyclase-activating polypeptide causes rapid Ca2+ release from intracellular stores and long lasting Ca2+ influx mediated by Na+ influx-dependent membrane depolarization in bovine adrenal chromaffin cells. Endocrinology. 1996 Mar;137(3):956–966. doi: 10.1210/endo.137.3.8603609. [DOI] [PubMed] [Google Scholar]
  55. Tang K., Wu H., Mahata S. K., Mahata M., Gill B. M., Parmer R. J., O'Connor D. T. Stimulus coupling to transcription versus secretion in pheochromocytoma cells. Convergent and divergent signal transduction pathways and the crucial roles for route of cytosolic calcium entry and protein kinase C. J Clin Invest. 1997 Sep 1;100(5):1180–1192. doi: 10.1172/JCI119630. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Tang K., Wu H., Mahata S. K., Taupenot L., Rozansky D. J., Parmer R. J., O'Connor D. T. Stimulus-transcription coupling in pheochromocytoma cells. Promoter region-specific activation of chromogranin a biosynthesis. J Biol Chem. 1996 Nov 8;271(45):28382–28390. doi: 10.1074/jbc.271.45.28382. [DOI] [PubMed] [Google Scholar]
  57. Tatemoto K., Efendić S., Mutt V., Makk G., Feistner G. J., Barchas J. D. Pancreastatin, a novel pancreatic peptide that inhibits insulin secretion. Nature. 1986 Dec 4;324(6096):476–478. doi: 10.1038/324476a0. [DOI] [PubMed] [Google Scholar]
  58. Taupenot L., Ciesielski-Treska J., Ulrich G., Chasserot-Golaz S., Aunis D., Bader M. F. Chromogranin A triggers a phenotypic transformation and the generation of nitric oxide in brain microglial cells. Neuroscience. 1996 May;72(2):377–389. doi: 10.1016/0306-4522(96)83172-1. [DOI] [PubMed] [Google Scholar]
  59. Tischler A. S., Perlman R. L., Costopoulos D., Horwitz J. Vasoactive intestinal peptide increases tyrosine hydroxylase activity in normal and neoplastic rat chromaffin cell cultures. Neurosci Lett. 1985 Oct 24;61(1-2):141–146. doi: 10.1016/0304-3940(85)90415-x. [DOI] [PubMed] [Google Scholar]
  60. Videen J. S., Mezger M. S., Chang Y. M., O'Connor D. T. Calcium and catecholamine interactions with adrenal chromogranins. Comparison of driving forces in binding and aggregation. J Biol Chem. 1992 Feb 15;267(5):3066–3073. [PubMed] [Google Scholar]
  61. Volpe P., Salviati G., Chu A. Calcium-gated calcium channels in sarcoplasmic reticulum of rabbit skinned skeletal muscle fibers. J Gen Physiol. 1986 Feb;87(2):289–303. doi: 10.1085/jgp.87.2.289. [DOI] [PMC free article] [PubMed] [Google Scholar]
  62. Wakade A. R. Noncholinergic transmitter(s) maintains secretion of catecholamines from rat adrenal medulla for several hours of continuous stimulation of splanchnic neurons. J Neurochem. 1988 Apr;50(4):1302–1308. doi: 10.1111/j.1471-4159.1988.tb10608.x. [DOI] [PubMed] [Google Scholar]
  63. Walton K. M., Rehfuss R. P., Chrivia J. C., Lochner J. E., Goodman R. H. A dominant repressor of cyclic adenosine 3',5'-monophosphate (cAMP)-regulated enhancer-binding protein activity inhibits the cAMP-mediated induction of the somatostatin promoter in vivo. Mol Endocrinol. 1992 Apr;6(4):647–655. doi: 10.1210/mend.6.4.1350057. [DOI] [PubMed] [Google Scholar]
  64. Watanabe T., Masuo Y., Matsumoto H., Suzuki N., Ohtaki T., Masuda Y., Kitada C., Tsuda M., Fujino M. Pituitary adenylate cyclase activating polypeptide provokes cultured rat chromaffin cells to secrete adrenaline. Biochem Biophys Res Commun. 1992 Jan 15;182(1):403–411. doi: 10.1016/s0006-291x(05)80159-7. [DOI] [PubMed] [Google Scholar]
  65. Winkler H. The adrenal chromaffin granule: a model for large dense core vesicles of endocrine and nervous tissue. J Anat. 1993 Oct;183(Pt 2):237–252. [PMC free article] [PubMed] [Google Scholar]
  66. Wu H., Mahata S. K., Mahata M., Webster N. J., Parmer R. J., O'Connor D. T. A functional cyclic AMP response element plays a crucial role in neuroendocrine cell type-specific expression of the secretory granule protein chromogranin A. J Clin Invest. 1995 Jul;96(1):568–578. doi: 10.1172/JCI118069. [DOI] [PMC free article] [PubMed] [Google Scholar]
  67. Wu H., Rozansky D. J., Webster N. J., O'Connor D. T. Cell type-specific gene expression in the neuroendocrine system. A neuroendocrine-specific regulatory element in the promoter of chromogranin A, a ubiquitous secretory granule core protein. J Clin Invest. 1994 Jul;94(1):118–129. doi: 10.1172/JCI117297. [DOI] [PMC free article] [PubMed] [Google Scholar]
  68. Yada T., Sakurada M., Ihida K., Nakata M., Murata F., Arimura A., Kikuchi M. Pituitary adenylate cyclase activating polypeptide is an extraordinarily potent intra-pancreatic regulator of insulin secretion from islet beta-cells. J Biol Chem. 1994 Jan 14;269(2):1290–1293. [PubMed] [Google Scholar]
  69. Yoo S. H., Albanesi J. P. High capacity, low affinity Ca2+ binding of chromogranin A. Relationship between the pH-induced conformational change and Ca2+ binding property. J Biol Chem. 1991 Apr 25;266(12):7740–7745. [PubMed] [Google Scholar]
  70. Zhong Y. Mediation of PACAP-like neuropeptide transmission by coactivation of Ras/Raf and cAMP signal transduction pathways in Drosophila. Nature. 1995 Jun 15;375(6532):588–592. doi: 10.1038/375588a0. [DOI] [PubMed] [Google Scholar]
  71. de Wet J. R., Wood K. V., DeLuca M., Helinski D. R., Subramani S. Firefly luciferase gene: structure and expression in mammalian cells. Mol Cell Biol. 1987 Feb;7(2):725–737. doi: 10.1128/mcb.7.2.725. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES