Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1998 Feb 15;101(4):890–898. doi: 10.1172/JCI1112

Macrophages that have ingested apoptotic cells in vitro inhibit proinflammatory cytokine production through autocrine/paracrine mechanisms involving TGF-beta, PGE2, and PAF.

V A Fadok 1, D L Bratton 1, A Konowal 1, P W Freed 1, J Y Westcott 1, P M Henson 1
PMCID: PMC508637  PMID: 9466984

Abstract

Apoptosis in vivo is followed almost inevitably by rapid uptake into adjacent phagocytic cells, a critical process in tissue remodeling, regulation of the immune response, or resolution of inflammation. Phagocytosis of apoptotic cells by macrophages has been suggested to be a quiet process that does not lead to production of inflammatory mediators. Here we show that phagocytosis of apoptotic neutrophils (in contrast to immunoglobulin G-opsonized apoptotic cells) actively inhibited the production of interleukin (IL)-1beta, IL-8, IL-10, granulocyte macrophage colony-stimulating factor, and tumor necrosis factor-alpha, as well as leukotriene C4 and thromboxane B2, by human monocyte-derived macrophages. In contrast, production of transforming growth factor (TGF)-beta1, prostaglandin E2, and platelet-activating factor (PAF) was increased. The latter appeared to be involved in the inhibition of proinflammatory cytokine production because addition of exogenous TGF-beta1, prostaglandin E2, or PAF resulted in inhibition of lipopolysaccharide-stimulated cytokine production. Furthermore, anti-TGF-beta antibody, indomethacin, or PAF receptor antagonists restored cytokine production in lipopolysaccharide-stimulated macrophages that had phagocytosed apoptotic cells. These results suggest that binding and/or phagocytosis of apoptotic cells induces active antiinflammatory or suppressive properties in human macrophages. Therefore, it is likely that resolution of inflammation depends not only on the removal of apoptotic cells but on active suppression of inflammatory mediator production. Disorders in either could result in chronic inflammatory diseases.

Full Text

The Full Text of this article is available as a PDF (467.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bogdan C., Paik J., Vodovotz Y., Nathan C. Contrasting mechanisms for suppression of macrophage cytokine release by transforming growth factor-beta and interleukin-10. J Biol Chem. 1992 Nov 15;267(32):23301–23308. [PubMed] [Google Scholar]
  2. Cox G., Crossley J., Xing Z. Macrophage engulfment of apoptotic neutrophils contributes to the resolution of acute pulmonary inflammation in vivo. Am J Respir Cell Mol Biol. 1995 Feb;12(2):232–237. doi: 10.1165/ajrcmb.12.2.7865221. [DOI] [PubMed] [Google Scholar]
  3. Dini L., Autuori F., Lentini A., Oliverio S., Piacentini M. The clearance of apoptotic cells in the liver is mediated by the asialoglycoprotein receptor. FEBS Lett. 1992 Jan 20;296(2):174–178. doi: 10.1016/0014-5793(92)80373-o. [DOI] [PubMed] [Google Scholar]
  4. Dransfield I., Buckle A. M., Savill J. S., McDowall A., Haslett C., Hogg N. Neutrophil apoptosis is associated with a reduction in CD16 (Fc gamma RIII) expression. J Immunol. 1994 Aug 1;153(3):1254–1263. [PubMed] [Google Scholar]
  5. Duvall E., Wyllie A. H., Morris R. G. Macrophage recognition of cells undergoing programmed cell death (apoptosis). Immunology. 1985 Oct;56(2):351–358. [PMC free article] [PubMed] [Google Scholar]
  6. Fadok V. A., Laszlo D. J., Noble P. W., Weinstein L., Riches D. W., Henson P. M. Particle digestibility is required for induction of the phosphatidylserine recognition mechanism used by murine macrophages to phagocytose apoptotic cells. J Immunol. 1993 Oct 15;151(8):4274–4285. [PubMed] [Google Scholar]
  7. Fadok V. A., Savill J. S., Haslett C., Bratton D. L., Doherty D. E., Campbell P. A., Henson P. M. Different populations of macrophages use either the vitronectin receptor or the phosphatidylserine receptor to recognize and remove apoptotic cells. J Immunol. 1992 Dec 15;149(12):4029–4035. [PubMed] [Google Scholar]
  8. Fadok V. A., Voelker D. R., Campbell P. A., Cohen J. J., Bratton D. L., Henson P. M. Exposure of phosphatidylserine on the surface of apoptotic lymphocytes triggers specific recognition and removal by macrophages. J Immunol. 1992 Apr 1;148(7):2207–2216. [PubMed] [Google Scholar]
  9. Fiorentino D. F., Zlotnik A., Mosmann T. R., Howard M., O'Garra A. IL-10 inhibits cytokine production by activated macrophages. J Immunol. 1991 Dec 1;147(11):3815–3822. [PubMed] [Google Scholar]
  10. Flora P. K., Gregory C. D. Recognition of apoptotic cells by human macrophages: inhibition by a monocyte/macrophage-specific monoclonal antibody. Eur J Immunol. 1994 Nov;24(11):2625–2632. doi: 10.1002/eji.1830241109. [DOI] [PubMed] [Google Scholar]
  11. Fukasawa M., Adachi H., Hirota K., Tsujimoto M., Arai H., Inoue K. SRB1, a class B scavenger receptor, recognizes both negatively charged liposomes and apoptotic cells. Exp Cell Res. 1996 Jan 10;222(1):246–250. doi: 10.1006/excr.1996.0030. [DOI] [PubMed] [Google Scholar]
  12. Grigg J. M., Savill J. S., Sarraf C., Haslett C., Silverman M. Neutrophil apoptosis and clearance from neonatal lungs. Lancet. 1991 Sep 21;338(8769):720–722. doi: 10.1016/0140-6736(91)91443-x. [DOI] [PubMed] [Google Scholar]
  13. Haslett C., Guthrie L. A., Kopaniak M. M., Johnston R. B., Jr, Henson P. M. Modulation of multiple neutrophil functions by preparative methods or trace concentrations of bacterial lipopolysaccharide. Am J Pathol. 1985 Apr;119(1):101–110. [PMC free article] [PubMed] [Google Scholar]
  14. Haslett C., Savill J. S., Whyte M. K., Stern M., Dransfield I., Meagher L. C. Granulocyte apoptosis and the control of inflammation. Philos Trans R Soc Lond B Biol Sci. 1994 Aug 30;345(1313):327–333. doi: 10.1098/rstb.1994.0113. [DOI] [PubMed] [Google Scholar]
  15. Homburg C. H., de Haas M., von dem Borne A. E., Verhoeven A. J., Reutelingsperger C. P., Roos D. Human neutrophils lose their surface Fc gamma RIII and acquire Annexin V binding sites during apoptosis in vitro. Blood. 1995 Jan 15;85(2):532–540. [PubMed] [Google Scholar]
  16. Kelly R. W., Deam S., Cameron M. J., Seamark R. F. Measurement by radioimmunoassay of prostaglandins as their methyl oximes. Prostaglandins Leukot Med. 1986 Sep;24(1):1–14. doi: 10.1016/0262-1746(86)90201-5. [DOI] [PubMed] [Google Scholar]
  17. Koopman G., Reutelingsperger C. P., Kuijten G. A., Keehnen R. M., Pals S. T., van Oers M. H. Annexin V for flow cytometric detection of phosphatidylserine expression on B cells undergoing apoptosis. Blood. 1994 Sep 1;84(5):1415–1420. [PubMed] [Google Scholar]
  18. Kulkarni A. B., Huh C. G., Becker D., Geiser A., Lyght M., Flanders K. C., Roberts A. B., Sporn M. B., Ward J. M., Karlsson S. Transforming growth factor beta 1 null mutation in mice causes excessive inflammatory response and early death. Proc Natl Acad Sci U S A. 1993 Jan 15;90(2):770–774. doi: 10.1073/pnas.90.2.770. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Kunkel S. L., Spengler M., May M. A., Spengler R., Larrick J., Remick D. Prostaglandin E2 regulates macrophage-derived tumor necrosis factor gene expression. J Biol Chem. 1988 Apr 15;263(11):5380–5384. [PubMed] [Google Scholar]
  20. Luciani M. F., Chimini G. The ATP binding cassette transporter ABC1, is required for the engulfment of corpses generated by apoptotic cell death. EMBO J. 1996 Jan 15;15(2):226–235. [PMC free article] [PubMed] [Google Scholar]
  21. Martin S. J., Reutelingsperger C. P., McGahon A. J., Rader J. A., van Schie R. C., LaFace D. M., Green D. R. Early redistribution of plasma membrane phosphatidylserine is a general feature of apoptosis regardless of the initiating stimulus: inhibition by overexpression of Bcl-2 and Abl. J Exp Med. 1995 Nov 1;182(5):1545–1556. doi: 10.1084/jem.182.5.1545. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Meagher L. C., Savill J. S., Baker A., Fuller R. W., Haslett C. Phagocytosis of apoptotic neutrophils does not induce macrophage release of thromboxane B2. J Leukoc Biol. 1992 Sep;52(3):269–273. [PubMed] [Google Scholar]
  23. Morris R. G., Hargreaves A. D., Duvall E., Wyllie A. H. Hormone-induced cell death. 2. Surface changes in thymocytes undergoing apoptosis. Am J Pathol. 1984 Jun;115(3):426–436. [PMC free article] [PubMed] [Google Scholar]
  24. Mower D. A., Jr, Peckham D. W., Illera V. A., Fishbaugh J. K., Stunz L. L., Ashman R. F. Decreased membrane phospholipid packing and decreased cell size precede DNA cleavage in mature mouse B cell apoptosis. J Immunol. 1994 May 15;152(10):4832–4842. [PubMed] [Google Scholar]
  25. Niiro H., Otsuka T., Abe M., Satoh H., Ogo T., Nakano T., Furukawa Y., Niho Y. Epstein-Barr virus BCRF1 gene product (viral interleukin 10) inhibits superoxide anion production by human monocytes. Lymphokine Cytokine Res. 1992 Oct;11(5):209–214. [PubMed] [Google Scholar]
  26. Niiro H., Otsuka T., Kuga S., Nemoto Y., Abe M., Hara N., Nakano T., Ogo T., Niho Y. IL-10 inhibits prostaglandin E2 production by lipopolysaccharide-stimulated monocytes. Int Immunol. 1994 Apr;6(4):661–664. doi: 10.1093/intimm/6.4.661. [DOI] [PubMed] [Google Scholar]
  27. Noble P. W., Henson P. M., Lucas C., Mora-Worms M., Carré P. C., Riches D. W. Transforming growth factor-beta primes macrophages to express inflammatory gene products in response to particulate stimuli by an autocrine/paracrine mechanism. J Immunol. 1993 Jul 15;151(2):979–989. [PubMed] [Google Scholar]
  28. Oswald I. P., Wynn T. A., Sher A., James S. L. Interleukin 10 inhibits macrophage microbicidal activity by blocking the endogenous production of tumor necrosis factor alpha required as a costimulatory factor for interferon gamma-induced activation. Proc Natl Acad Sci U S A. 1992 Sep 15;89(18):8676–8680. doi: 10.1073/pnas.89.18.8676. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Platt N., Suzuki H., Kurihara Y., Kodama T., Gordon S. Role for the class A macrophage scavenger receptor in the phagocytosis of apoptotic thymocytes in vitro. Proc Natl Acad Sci U S A. 1996 Oct 29;93(22):12456–12460. doi: 10.1073/pnas.93.22.12456. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Pradelles P., Grassi J., Maclouf J. Enzyme immunoassays of eicosanoids using acetylcholinesterase. Methods Enzymol. 1990;187:24–34. doi: 10.1016/0076-6879(90)87005-n. [DOI] [PubMed] [Google Scholar]
  31. Pradhan D., Krahling S., Williamson P., Schlegel R. A. Multiple systems for recognition of apoptotic lymphocytes by macrophages. Mol Biol Cell. 1997 May;8(5):767–778. doi: 10.1091/mbc.8.5.767. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Rose D. M., Fadok V. A., Riches D. W., Clay K. L., Henson P. M. Autocrine/paracrine involvement of platelet-activating factor and transforming growth factor-beta in the induction of phosphatidylserine recognition by murine macrophages. J Immunol. 1995 Dec 15;155(12):5819–5825. [PubMed] [Google Scholar]
  33. Rotello R. J., Fernandez P. A., Yuan J. Anti-apogens and anti-engulfens: monoclonal antibodies reveal specific antigens on apoptotic and engulfment cells during chicken embryonic development. Development. 1994 Jun;120(6):1421–1431. doi: 10.1242/dev.120.6.1421. [DOI] [PubMed] [Google Scholar]
  34. Ruscetti F., Varesio L., Ochoa A., Ortaldo J. Pleiotropic effects of transforming growth factor-beta on cells of the immune system. Ann N Y Acad Sci. 1993 Jun 23;685:488–500. doi: 10.1111/j.1749-6632.1993.tb35911.x. [DOI] [PubMed] [Google Scholar]
  35. Sambrano G. R., Steinberg D. Recognition of oxidatively damaged and apoptotic cells by an oxidized low density lipoprotein receptor on mouse peritoneal macrophages: role of membrane phosphatidylserine. Proc Natl Acad Sci U S A. 1995 Feb 28;92(5):1396–1400. doi: 10.1073/pnas.92.5.1396. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Savill J. S., Wyllie A. H., Henson J. E., Walport M. J., Henson P. M., Haslett C. Macrophage phagocytosis of aging neutrophils in inflammation. Programmed cell death in the neutrophil leads to its recognition by macrophages. J Clin Invest. 1989 Mar;83(3):865–875. doi: 10.1172/JCI113970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Savill J., Dransfield I., Hogg N., Haslett C. Vitronectin receptor-mediated phagocytosis of cells undergoing apoptosis. Nature. 1990 Jan 11;343(6254):170–173. doi: 10.1038/343170a0. [DOI] [PubMed] [Google Scholar]
  38. Savill J., Fadok V., Henson P., Haslett C. Phagocyte recognition of cells undergoing apoptosis. Immunol Today. 1993 Mar;14(3):131–136. doi: 10.1016/0167-5699(93)90215-7. [DOI] [PubMed] [Google Scholar]
  39. Savill J., Hogg N., Ren Y., Haslett C. Thrombospondin cooperates with CD36 and the vitronectin receptor in macrophage recognition of neutrophils undergoing apoptosis. J Clin Invest. 1992 Oct;90(4):1513–1522. doi: 10.1172/JCI116019. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Schlegel R. A., Stevens M., Lumley-Sapanski K., Williamson P. Altered lipid packing identifies apoptotic thymocytes. Immunol Lett. 1993 Jun;36(3):283–288. doi: 10.1016/0165-2478(93)90101-7. [DOI] [PubMed] [Google Scholar]
  41. Shull M. M., Ormsby I., Kier A. B., Pawlowski S., Diebold R. J., Yin M., Allen R., Sidman C., Proetzel G., Calvin D. Targeted disruption of the mouse transforming growth factor-beta 1 gene results in multifocal inflammatory disease. Nature. 1992 Oct 22;359(6397):693–699. doi: 10.1038/359693a0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Stern M., Savill J., Haslett C. Human monocyte-derived macrophage phagocytosis of senescent eosinophils undergoing apoptosis. Mediation by alpha v beta 3/CD36/thrombospondin recognition mechanism and lack of phlogistic response. Am J Pathol. 1996 Sep;149(3):911–921. [PMC free article] [PubMed] [Google Scholar]
  43. Strassmann G., Patil-Koota V., Finkelman F., Fong M., Kambayashi T. Evidence for the involvement of interleukin 10 in the differential deactivation of murine peritoneal macrophages by prostaglandin E2. J Exp Med. 1994 Dec 1;180(6):2365–2370. doi: 10.1084/jem.180.6.2365. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Verhoven B., Schlegel R. A., Williamson P. Mechanisms of phosphatidylserine exposure, a phagocyte recognition signal, on apoptotic T lymphocytes. J Exp Med. 1995 Nov 1;182(5):1597–1601. doi: 10.1084/jem.182.5.1597. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Wahl S. M. Transforming growth factor beta: the good, the bad, and the ugly. J Exp Med. 1994 Nov 1;180(5):1587–1590. doi: 10.1084/jem.180.5.1587. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Westcott J. Y., Johnston K., Batt R. A., Wenzel S. E., Voelkel N. F. Measurement of peptidoleukotrienes in biological fluids. J Appl Physiol (1985) 1990 Jun;68(6):2640–2648. doi: 10.1152/jappl.1990.68.6.2640. [DOI] [PubMed] [Google Scholar]
  47. Wyllie A. H., Kerr J. F., Currie A. R. Cell death: the significance of apoptosis. Int Rev Cytol. 1980;68:251–306. doi: 10.1016/s0074-7696(08)62312-8. [DOI] [PubMed] [Google Scholar]
  48. de Waal Malefyt R., Abrams J., Bennett B., Figdor C. G., de Vries J. E. Interleukin 10(IL-10) inhibits cytokine synthesis by human monocytes: an autoregulatory role of IL-10 produced by monocytes. J Exp Med. 1991 Nov 1;174(5):1209–1220. doi: 10.1084/jem.174.5.1209. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES