Abstract
Apolipoprotein E knockout (apoE0) mice accumulate atherogenic remnant lipoproteins in plasma. We now provide evidence that these particles are enriched in sphingomyelin (SM), and explore the mechanisms and possible pathophysiological consequences of this finding. The phosphatidylcholine/sphingomyelin (PC/SM) ratio was reduced in all lipoproteins in apoE0 mice compared with wild-type (Wt) mice (2.0+/-0.2 vs. 4.7+/-0.5; 2.8+/-0.5 vs. 5.5+/-0.9; 1.9+/-0. 5 vs. 4.6+/-0.5 for VLDL, LDL, and HDL), reflecting 400 and 179% increases in plasma pools of SM and PC, respectively. Turnover studies using [14C]PC/[3H]SM VLDL or HDL showed that the fractional catabolic rate (FCR) of VLDL-SM and HDL-SM were markedly reduced in the apoE0 mice compared with Wt mice, while the FCRs of VLDL-PC and HDL-PC were similar. By contrast, the FCRs of [3H]PC ether and [14C]SM were identical in apoE0 and Wt mice. The production rates of VLDL-SM and HDL-SM in apoE0 mice were much higher than in Wt mice, while the production rates of lipoprotein PC were similar. To assess the underlying mechanisms, we also measured the PC/SM ratio in VLDL and LDL of LDL receptor knockout (LDLr0) and hepatic LDL receptor-related protein knockout/LDLr0 mice, but found no difference with Wt mice. Using S-sphingomyelinase, an enzyme secreted by macrophages and endothelial cells, we found that VLDL and LDL from apoE0, but not from Wt or LDLr0 mice, were significantly aggregated, and that aggregation was not prevented by adding back apoE. We then enriched the apoE0-VLDL and Wt-VLDL with different amounts of SM, and found that VLDL aggregation was enhanced. Thus, the increased SM content of lipoproteins in apoE0 mice is due to combined synthesis and clearance defects. Impaired SM clearance reflects resistance to intravascular enzymes and delayed removal by a non-LDLr, non-LDLr related protein pathway. The increased SM content in slowly cleared remnant lipoproteins may enhance their susceptibility to arterial wall SMase and increase their atherogenic potential.
Full Text
The Full Text of this article is available as a PDF (333.4 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Aalto-Setälä K., Fisher E. A., Chen X., Chajek-Shaul T., Hayek T., Zechner R., Walsh A., Ramakrishnan R., Ginsberg H. N., Breslow J. L. Mechanism of hypertriglyceridemia in human apolipoprotein (apo) CIII transgenic mice. Diminished very low density lipoprotein fractional catabolic rate associated with increased apo CIII and reduced apo E on the particles. J Clin Invest. 1992 Nov;90(5):1889–1900. doi: 10.1172/JCI116066. [DOI] [PMC free article] [PubMed] [Google Scholar]
- BARTLETT G. R. Phosphorus assay in column chromatography. J Biol Chem. 1959 Mar;234(3):466–468. [PubMed] [Google Scholar]
- BLIGH E. G., DYER W. J. A rapid method of total lipid extraction and purification. Can J Biochem Physiol. 1959 Aug;37(8):911–917. doi: 10.1139/o59-099. [DOI] [PubMed] [Google Scholar]
- Beisiegel U. Receptors for triglyceride-rich lipoproteins and their role in lipoprotein metabolism. Curr Opin Lipidol. 1995 Jun;6(3):117–122. doi: 10.1097/00041433-199506000-00002. [DOI] [PubMed] [Google Scholar]
- Brinton E. A., Eisenberg S., Breslow J. L. Human HDL cholesterol levels are determined by apoA-I fractional catabolic rate, which correlates inversely with estimates of HDL particle size. Effects of gender, hepatic and lipoprotein lipases, triglyceride and insulin levels, and body fat distribution. Arterioscler Thromb. 1994 May;14(5):707–720. doi: 10.1161/01.atv.14.5.707. [DOI] [PubMed] [Google Scholar]
- Gordon I., Grauer E., Genis I., Sehayek E., Michaelson D. M. Memory deficits and cholinergic impairments in apolipoprotein E-deficient mice. Neurosci Lett. 1995 Oct 13;199(1):1–4. doi: 10.1016/0304-3940(95)12006-p. [DOI] [PubMed] [Google Scholar]
- Granot E., Schwiegelshohn B., Tabas I., Gorecki M., Vogel T., Carpentier Y. A., Deckelbaum R. J. Effects of particle size on cell uptake of model triglyceride-rich particles with and without apoprotein E. Biochemistry. 1994 Dec 20;33(50):15190–15197. doi: 10.1021/bi00254a030. [DOI] [PubMed] [Google Scholar]
- Guyton J. R., Klemp K. F. Development of the lipid-rich core in human atherosclerosis. Arterioscler Thromb Vasc Biol. 1996 Jan;16(1):4–11. doi: 10.1161/01.atv.16.1.4. [DOI] [PubMed] [Google Scholar]
- Herz J., Qiu S. Q., Oesterle A., DeSilva H. V., Shafi S., Havel R. J. Initial hepatic removal of chylomicron remnants is unaffected but endocytosis is delayed in mice lacking the low density lipoprotein receptor. Proc Natl Acad Sci U S A. 1995 May 9;92(10):4611–4615. doi: 10.1073/pnas.92.10.4611. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hoff H. F., Morton R. E. Lipoproteins containing apo B extracted from human aortas. Structure and function. Ann N Y Acad Sci. 1985;454:183–194. doi: 10.1111/j.1749-6632.1985.tb11857.x. [DOI] [PubMed] [Google Scholar]
- Ji Z. S., Fazio S., Mahley R. W. Variable heparan sulfate proteoglycan binding of apolipoprotein E variants may modulate the expression of type III hyperlipoproteinemia. J Biol Chem. 1994 May 6;269(18):13421–13428. [PubMed] [Google Scholar]
- Jiang X., Francone O. L., Bruce C., Milne R., Mar J., Walsh A., Breslow J. L., Tall A. R. Increased prebeta-high density lipoprotein, apolipoprotein AI, and phospholipid in mice expressing the human phospholipid transfer protein and human apolipoprotein AI transgenes. J Clin Invest. 1996 Nov 15;98(10):2373–2380. doi: 10.1172/JCI119050. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kim D. H., Magoori K., Inoue T. R., Mao C. C., Kim H. J., Suzuki H., Fujita T., Endo Y., Saeki S., Yamamoto T. T. Exon/intron organization, chromosome localization, alternative splicing, and transcription units of the human apolipoprotein E receptor 2 gene. J Biol Chem. 1997 Mar 28;272(13):8498–8504. doi: 10.1074/jbc.272.13.8498. [DOI] [PubMed] [Google Scholar]
- Laboda H. M., Glick J. M., Phillips M. C. Hydrolysis of lipid monolayers and the substrate specificity of hepatic lipase. Biochim Biophys Acta. 1986 Apr 15;876(2):233–242. doi: 10.1016/0005-2760(86)90279-1. [DOI] [PubMed] [Google Scholar]
- Lane J. T., Subbaiah P. V., Otto M. E., Bagdade J. D. Lipoprotein composition and HDL particle size distribution in women with non-insulin-dependent diabetes mellitus and the effects of probucol treatment. J Lab Clin Med. 1991 Aug;118(2):120–128. [PubMed] [Google Scholar]
- MATTHEWS C. M. The theory of tracer experiments with 131I-labelled plasma proteins. Phys Med Biol. 1957 Jul;2(1):36–53. doi: 10.1088/0031-9155/2/1/305. [DOI] [PubMed] [Google Scholar]
- MCCANDLESS E. L., ZILVERSMIT D. B. The effect of cholesterol on the turnover of lecithin, cephalin and sphingomyelin in the rabbit. Arch Biochem Biophys. 1956 Jun;62(2):402–410. doi: 10.1016/0003-9861(56)90138-2. [DOI] [PubMed] [Google Scholar]
- Melton D. A., Krieg P. A., Rebagliati M. R., Maniatis T., Zinn K., Green M. R. Efficient in vitro synthesis of biologically active RNA and RNA hybridization probes from plasmids containing a bacteriophage SP6 promoter. Nucleic Acids Res. 1984 Sep 25;12(18):7035–7056. doi: 10.1093/nar/12.18.7035. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Merrill A. H., Jr, Jones D. D. An update of the enzymology and regulation of sphingomyelin metabolism. Biochim Biophys Acta. 1990 May 1;1044(1):1–12. doi: 10.1016/0005-2760(90)90211-f. [DOI] [PubMed] [Google Scholar]
- Merrill A. H., Jr, Nixon D. W., Williams R. D. Activities of serine palmitoyltransferase (3-ketosphinganine synthase) in microsomes from different rat tissues. J Lipid Res. 1985 May;26(5):617–622. [PubMed] [Google Scholar]
- Messmer T. O., Wang E., Stevens V. L., Merrill A. H., Jr Sphingolipid biosynthesis by rat liver cells: effects of serine, fatty acids and lipoproteins. J Nutr. 1989 Apr;119(4):534–538. doi: 10.1093/jn/119.4.534. [DOI] [PubMed] [Google Scholar]
- Myher J. J., Kuksis A., Pind S. Molecular species of glycerophospholipids and sphingomyelins of human plasma: comparison to red blood cells. Lipids. 1989 May;24(5):408–418. doi: 10.1007/BF02535148. [DOI] [PubMed] [Google Scholar]
- Nagiec M. M., Lester R. L., Dickson R. C. Sphingolipid synthesis: identification and characterization of mammalian cDNAs encoding the Lcb2 subunit of serine palmitoyltransferase. Gene. 1996 Oct 24;177(1-2):237–241. doi: 10.1016/0378-1119(96)00309-5. [DOI] [PubMed] [Google Scholar]
- Nievelstein P. F., Fogelman A. M., Mottino G., Frank J. S. Lipid accumulation in rabbit aortic intima 2 hours after bolus infusion of low density lipoprotein. A deep-etch and immunolocalization study of ultrarapidly frozen tissue. Arterioscler Thromb. 1991 Nov-Dec;11(6):1795–1805. doi: 10.1161/01.atv.11.6.1795. [DOI] [PubMed] [Google Scholar]
- Noël C., Marcel Y. L., Davignon J. Plasma phospholipids in the different types of primary hyperlipoproteinemia. J Lab Clin Med. 1972 Apr;79(4):611–621. [PubMed] [Google Scholar]
- Oka K., Tzung K. W., Sullivan M., Lindsay E., Baldini A., Chan L. Human very-low-density lipoprotein receptor complementary DNA and deduced amino acid sequence and localization of its gene (VLDLR) to chromosome band 9p24 by fluorescence in situ hybridization. Genomics. 1994 Mar 15;20(2):298–300. doi: 10.1006/geno.1994.1171. [DOI] [PubMed] [Google Scholar]
- Phillips G. B., Dodge J. T. Composition of phospholipids and of phospholipid fatty acids of human plasma. J Lipid Res. 1967 Nov;8(6):676–681. [PubMed] [Google Scholar]
- Plump A. S., Breslow J. L. Apolipoprotein E and the apolipoprotein E-deficient mouse. Annu Rev Nutr. 1995;15:495–518. doi: 10.1146/annurev.nu.15.070195.002431. [DOI] [PubMed] [Google Scholar]
- Plump A. S., Smith J. D., Hayek T., Aalto-Setälä K., Walsh A., Verstuyft J. G., Rubin E. M., Breslow J. L. Severe hypercholesterolemia and atherosclerosis in apolipoprotein E-deficient mice created by homologous recombination in ES cells. Cell. 1992 Oct 16;71(2):343–353. doi: 10.1016/0092-8674(92)90362-g. [DOI] [PubMed] [Google Scholar]
- Pownall H. J., Hickson-Bick D., Massey J. B. Effects of hydrophobicity on turnover of plasma high density lipoproteins labeled with phosphatidylcholine ethers in the rat. J Lipid Res. 1991 May;32(5):793–800. [PubMed] [Google Scholar]
- Pownall H. J., Pao Q., Massey J. B. Acyl chain and headgroup specificity of human plasma lecithin:cholesterol acyltransferase. Separation of matrix and molecular specificities. J Biol Chem. 1985 Feb 25;260(4):2146–2152. [PubMed] [Google Scholar]
- Rodriguez J. L., Ghiselli G. C., Torreggiani D., Sirtori C. R. Very low density lipoproteins in normal and cholesterol-fed rabbits: lipid and protein composition and metabolism. Part 1. Chemical composition of very low density lipoproteins in rabbits. Atherosclerosis. 1976 Jan-Feb;23(1):73–83. doi: 10.1016/0021-9150(76)90119-2. [DOI] [PubMed] [Google Scholar]
- Ross R. The pathogenesis of atherosclerosis: a perspective for the 1990s. Nature. 1993 Apr 29;362(6423):801–809. doi: 10.1038/362801a0. [DOI] [PubMed] [Google Scholar]
- Schissel S. L., Schuchman E. H., Williams K. J., Tabas I. Zn2+-stimulated sphingomyelinase is secreted by many cell types and is a product of the acid sphingomyelinase gene. J Biol Chem. 1996 Aug 2;271(31):18431–18436. doi: 10.1074/jbc.271.31.18431. [DOI] [PubMed] [Google Scholar]
- Schissel S. L., Tweedie-Hardman J., Rapp J. H., Graham G., Williams K. J., Tabas I. Rabbit aorta and human atherosclerotic lesions hydrolyze the sphingomyelin of retained low-density lipoprotein. Proposed role for arterial-wall sphingomyelinase in subendothelial retention and aggregation of atherogenic lipoproteins. J Clin Invest. 1996 Sep 15;98(6):1455–1464. doi: 10.1172/JCI118934. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shiratori Y., Okwu A. K., Tabas I. Free cholesterol loading of macrophages stimulates phosphatidylcholine biosynthesis and up-regulation of CTP: phosphocholine cytidylyltransferase. J Biol Chem. 1994 Apr 15;269(15):11337–11348. [PubMed] [Google Scholar]
- Smith J. D., Trogan E., Ginsberg M., Grigaux C., Tian J., Miyata M. Decreased atherosclerosis in mice deficient in both macrophage colony-stimulating factor (op) and apolipoprotein E. Proc Natl Acad Sci U S A. 1995 Aug 29;92(18):8264–8268. doi: 10.1073/pnas.92.18.8264. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Subbaiah P. V., Davidson M. H., Ritter M. C., Buchanan W., Bagdade J. D. Effects of dietary supplementation with marine lipid concentrate on the plasma lipoprotein composition of hypercholesterolemic patients. Atherosclerosis. 1989 Oct;79(2-3):157–166. doi: 10.1016/0021-9150(89)90120-2. [DOI] [PubMed] [Google Scholar]
- Subbaiah P. V., Liu M. Role of sphingomyelin in the regulation of cholesterol esterification in the plasma lipoproteins. Inhibition of lecithin-cholesterol acyltransferase reaction. J Biol Chem. 1993 Sep 25;268(27):20156–20163. [PubMed] [Google Scholar]
- Takayama M., Itoh S., Nagasaki T., Tanimizu I. A new enzymatic method for determination of serum choline-containing phospholipids. Clin Chim Acta. 1977 Aug 15;79(1):93–98. doi: 10.1016/0009-8981(77)90465-x. [DOI] [PubMed] [Google Scholar]
- Williams K. J., Tabas I. The response-to-retention hypothesis of early atherogenesis. Arterioscler Thromb Vasc Biol. 1995 May;15(5):551–561. doi: 10.1161/01.atv.15.5.551. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Williams R. D., Wang E., Merrill A. H., Jr Enzymology of long-chain base synthesis by liver: characterization of serine palmitoyltransferase in rat liver microsomes. Arch Biochem Biophys. 1984 Jan;228(1):282–291. doi: 10.1016/0003-9861(84)90069-9. [DOI] [PubMed] [Google Scholar]
- Witztum J. L., Steinberg D. Role of oxidized low density lipoprotein in atherogenesis. J Clin Invest. 1991 Dec;88(6):1785–1792. doi: 10.1172/JCI115499. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yamazaki H., Bujo H., Kusunoki J., Seimiya K., Kanaki T., Morisaki N., Schneider W. J., Saito Y. Elements of neural adhesion molecules and a yeast vacuolar protein sorting receptor are present in a novel mammalian low density lipoprotein receptor family member. J Biol Chem. 1996 Oct 4;271(40):24761–24768. doi: 10.1074/jbc.271.40.24761. [DOI] [PubMed] [Google Scholar]
- Ylä-Herttuala S., Palinski W., Rosenfeld M. E., Parthasarathy S., Carew T. E., Butler S., Witztum J. L., Steinberg D. Evidence for the presence of oxidatively modified low density lipoprotein in atherosclerotic lesions of rabbit and man. J Clin Invest. 1989 Oct;84(4):1086–1095. doi: 10.1172/JCI114271. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zhang S. H., Reddick R. L., Piedrahita J. A., Maeda N. Spontaneous hypercholesterolemia and arterial lesions in mice lacking apolipoprotein E. Science. 1992 Oct 16;258(5081):468–471. doi: 10.1126/science.1411543. [DOI] [PubMed] [Google Scholar]