Abstract
Transition from placental to pulmonary oxygenation at birth depends on a rapid removal of fetal lung fluid from the developing alveoli. Alveolar fluid clearance was examined in ventilated, anesthetized developing guinea pigs of the ages newborn, 2-d-old, 5-d-old, 30-d-old, and 60-d-old (adult). An isosmolar 5% albumin solution was instilled into the lungs of the guinea pigs; the guinea pigs were then studied for 1 h. Alveolar fluid clearance was measured from the increase in alveolar protein concentration as water was reabsorbed. Newborn guinea pigs had a very high alveolar fluid clearance rate that declined rapidly within the first 5 postnatal days towards adult levels. The high alveolar fluid clearance at birth was apparently mediated by the beta-adrenergic system as demonstrated by the elevated plasma epinephrine levels and the increased sensitivity to inhibition by the beta-adrenergic antagonist propranolol immediately after birth. Surprisingly, exogenous addition of epinephrine was not able to stimulate alveolar fluid clearance in the newborn lung, but exogenous epinephrine stimulation increased over time to adult levels. The elevated alveolar fluid clearance at birth was associated with a significantly greater amiloride sensitivity in the newborn guinea pig lung. Northern blot analysis of distal lung tissue as well as isolated alveolar epithelial type II cells showed and confirmed higher levels of the alpha-subunit of the epithelial sodium channel mRNA in the newborn lung that rapidly tapered off toward adult levels. In conclusion, these data demonstrate the importance of the beta-adrenergic system and amiloride-sensitive sodium transporting pathways for clearance of fetal lung fluid at birth.
Full Text
The Full Text of this article is available as a PDF (240.9 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ballard S. T., Schepens S. M., Falcone J. C., Meininger G. A., Taylor A. E. Regional bioelectric properties of porcine airway epithelium. J Appl Physiol (1985) 1992 Nov;73(5):2021–2027. doi: 10.1152/jappl.1992.73.5.2021. [DOI] [PubMed] [Google Scholar]
- Barker P. M., Walters D. V., Markiewicz M., Strang L. B. Development of the lung liquid reabsorptive mechanism in fetal sheep: synergism of triiodothyronine and hydrocortisone. J Physiol. 1991 Feb;433:435–449. doi: 10.1113/jphysiol.1991.sp018436. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Berthiaume Y., Broaddus V. C., Gropper M. A., Tanita T., Matthay M. A. Alveolar liquid and protein clearance from normal dog lungs. J Appl Physiol (1985) 1988 Aug;65(2):585–593. doi: 10.1152/jappl.1988.65.2.585. [DOI] [PubMed] [Google Scholar]
- Berthiaume Y. Effect of exogenous cAMP and aminophylline on alveolar and lung liquid clearance in anesthetized sheep. J Appl Physiol (1985) 1991 Jun;70(6):2490–2497. doi: 10.1152/jappl.1991.70.6.2490. [DOI] [PubMed] [Google Scholar]
- Berthiaume Y., Staub N. C., Matthay M. A. Beta-adrenergic agonists increase lung liquid clearance in anesthetized sheep. J Clin Invest. 1987 Feb;79(2):335–343. doi: 10.1172/JCI112817. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bland R. D., Nielson D. W. Developmental changes in lung epithelial ion transport and liquid movement. Annu Rev Physiol. 1992;54:373–394. doi: 10.1146/annurev.ph.54.030192.002105. [DOI] [PubMed] [Google Scholar]
- Brown M. J., Olver R. E., Ramsden C. A., Strang L. B., Walters D. V. Effects of adrenaline and of spontaneous labour on the secretion and absorption of lung liquid in the fetal lamb. J Physiol. 1983 Nov;344:137–152. doi: 10.1113/jphysiol.1983.sp014929. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Canessa C. M., Horisberger J. D., Rossier B. C. Epithelial sodium channel related to proteins involved in neurodegeneration. Nature. 1993 Feb 4;361(6411):467–470. doi: 10.1038/361467a0. [DOI] [PubMed] [Google Scholar]
- Canessa C. M., Schild L., Buell G., Thorens B., Gautschi I., Horisberger J. D., Rossier B. C. Amiloride-sensitive epithelial Na+ channel is made of three homologous subunits. Nature. 1994 Feb 3;367(6462):463–467. doi: 10.1038/367463a0. [DOI] [PubMed] [Google Scholar]
- Chapman D. L., Carlton D. P., Nielson D. W., Cummings J. J., Poulain F. R., Bland R. D. Changes in lung lipid during spontaneous labor in fetal sheep. J Appl Physiol (1985) 1994 Feb;76(2):523–530. doi: 10.1152/jappl.1994.76.2.523. [DOI] [PubMed] [Google Scholar]
- Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
- Crandall E. D., Heming T. A., Palombo R. L., Goodman B. E. Effects of terbutaline on sodium transport in isolated perfused rat lung. J Appl Physiol (1985) 1986 Jan;60(1):289–294. doi: 10.1152/jappl.1986.60.1.289. [DOI] [PubMed] [Google Scholar]
- Ding C., Potter E. D., Qiu W., Coon S. L., Levine M. A., Guggino S. E. Cloning and widespread distribution of the rat rod-type cyclic nucleotide-gated cation channel. Am J Physiol. 1997 Apr;272(4 Pt 1):C1335–C1344. doi: 10.1152/ajpcell.1997.272.4.C1335. [DOI] [PubMed] [Google Scholar]
- Effros R. M., Mason G. R., Hukkanen J., Silverman P. New evidence for active sodium transport from fluid-filled rat lungs. J Appl Physiol (1985) 1989 Feb;66(2):906–919. doi: 10.1152/jappl.1989.66.2.906. [DOI] [PubMed] [Google Scholar]
- Enhorning G., Chamberlain D., Contreras C., Burgoyne R., Robertson B. Isoxsuprine-induced release of pulmonary surfactant in the rabbit fetus. Am J Obstet Gynecol. 1977 Sep 15;129(2):197–202. doi: 10.1016/0002-9378(77)90744-x. [DOI] [PubMed] [Google Scholar]
- Farman N., Talbot C. R., Boucher R., Fay M., Canessa C., Rossier B., Bonvalet J. P. Noncoordinated expression of alpha-, beta-, and gamma-subunit mRNAs of epithelial Na+ channel along rat respiratory tract. Am J Physiol. 1997 Jan;272(1 Pt 1):C131–C141. doi: 10.1152/ajpcell.1997.272.1.C131. [DOI] [PubMed] [Google Scholar]
- Folkesson H. G., Matthay M. A., Hébert C. A., Broaddus V. C. Acid aspiration-induced lung injury in rabbits is mediated by interleukin-8-dependent mechanisms. J Clin Invest. 1995 Jul;96(1):107–116. doi: 10.1172/JCI118009. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Folkesson H. G., Pittet J. F., Nitenberg G., Matthay M. A. Transforming growth factor-alpha increases alveolar liquid clearance in anesthetized ventilated rats. Am J Physiol. 1996 Aug;271(2 Pt 1):L236–L244. doi: 10.1152/ajplung.1996.271.2.L236. [DOI] [PubMed] [Google Scholar]
- Gatto C., Johnson M. G., Seybold V., Kulik T. J., Lock J. E., Johnson D. E. Distribution and quantitative developmental changes in guinea pig pulmonary beta-receptors. J Appl Physiol Respir Environ Exerc Physiol. 1984 Dec;57(6):1901–1907. doi: 10.1152/jappl.1984.57.6.1901. [DOI] [PubMed] [Google Scholar]
- Hummler E., Barker P., Gatzy J., Beermann F., Verdumo C., Schmidt A., Boucher R., Rossier B. C. Early death due to defective neonatal lung liquid clearance in alpha-ENaC-deficient mice. Nat Genet. 1996 Mar;12(3):325–328. doi: 10.1038/ng0396-325. [DOI] [PubMed] [Google Scholar]
- Ito Y., Niisato N., O'Brodovich H., Marunaka Y. The effect of brefeldin A on terbutaline-induced sodium absorption in fetal rat distal lung epithelium. Pflugers Arch. 1997 Aug;434(4):492–494. doi: 10.1007/s004240050425. [DOI] [PubMed] [Google Scholar]
- Jayr C., Garat C., Meignan M., Pittet J. F., Zelter M., Matthay M. A. Alveolar liquid and protein clearance in anesthetized ventilated rats. J Appl Physiol (1985) 1994 Jun;76(6):2636–2642. doi: 10.1152/jappl.1994.76.6.2636. [DOI] [PubMed] [Google Scholar]
- Jayr C., Matthay M. A. Alveolar and lung liquid clearance in the absence of pulmonary blood flow in sheep. J Appl Physiol (1985) 1991 Nov;71(5):1679–1687. doi: 10.1152/jappl.1991.71.5.1679. [DOI] [PubMed] [Google Scholar]
- Kacimi R., Moalic J. M., Aldashev A., Vatner D. E., Richalet J. P., Crozatier B. Differential regulation of G protein expression in rat hearts exposed to chronic hypoxia. Am J Physiol. 1995 Dec;269(6 Pt 2):H1865–H1873. doi: 10.1152/ajpheart.1995.269.6.H1865. [DOI] [PubMed] [Google Scholar]
- Kemp P. J., MacGregor G. G., Olver R. E. G protein-regulated large-conductance chloride channels in freshly isolated fetal type II alveolar epithelial cells. Am J Physiol. 1993 Oct;265(4 Pt 1):L323–L329. doi: 10.1152/ajplung.1993.265.4.L323. [DOI] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Matalon S., Bridges R. J., Benos D. J. Amiloride-inhibitable Na+ conductive pathways in alveolar type II pneumocytes. Am J Physiol. 1991 Feb;260(2 Pt 1):L90–L96. doi: 10.1152/ajplung.1991.260.2.L90. [DOI] [PubMed] [Google Scholar]
- Matthay M. A., Folkesson H. G., Verkman A. S. Salt and water transport across alveolar and distal airway epithelia in the adult lung. Am J Physiol. 1996 Apr;270(4 Pt 1):L487–L503. doi: 10.1152/ajplung.1996.270.4.L487. [DOI] [PubMed] [Google Scholar]
- Matthay M. A., Landolt C. C., Staub N. C. Differential liquid and protein clearance from the alveoli of anesthetized sheep. J Appl Physiol Respir Environ Exerc Physiol. 1982 Jul;53(1):96–104. doi: 10.1152/jappl.1982.53.1.96. [DOI] [PubMed] [Google Scholar]
- Mitsui A., Nohta H., Ohkura Y. High-performance liquid chromatography of plasma catecholamines using 1,2-diphenylethylenediamine as precolumn fluorescence derivatization reagent. J Chromatogr. 1985 Nov 8;344:61–70. doi: 10.1016/s0378-4347(00)82007-1. [DOI] [PubMed] [Google Scholar]
- Monaghan A. S., Baines D. L., Kemp P. J., Olver R. E. Inwardly rectifying K+ currents of alveolar type II cells isolated from fetal guinea-pig lung: regulation by G protein- and Mg2+-dependent pathways. Pflugers Arch. 1997 Jan;433(3):294–303. doi: 10.1007/s004240050280. [DOI] [PubMed] [Google Scholar]
- O'Brodovich H., Canessa C., Ueda J., Rafii B., Rossier B. C., Edelson J. Expression of the epithelial Na+ channel in the developing rat lung. Am J Physiol. 1993 Aug;265(2 Pt 1):C491–C496. doi: 10.1152/ajpcell.1993.265.2.C491. [DOI] [PubMed] [Google Scholar]
- O'Brodovich H., Hannam V., Seear M., Mullen J. B. Amiloride impairs lung water clearance in newborn guinea pigs. J Appl Physiol (1985) 1990 Apr;68(4):1758–1762. doi: 10.1152/jappl.1990.68.4.1758. [DOI] [PubMed] [Google Scholar]
- Olver R. E., Ramsden C. A., Strang L. B., Walters D. V. The role of amiloride-blockable sodium transport in adrenaline-induced lung liquid reabsorption in the fetal lamb. J Physiol. 1986 Jul;376:321–340. doi: 10.1113/jphysiol.1986.sp016156. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pitkänen O. M., Tanswell A. K., O'Brodovich H. M. Fetal lung cell-derived matrix alters distal lung epithelial ion transport. Am J Physiol. 1995 May;268(5 Pt 1):L762–L771. doi: 10.1152/ajplung.1995.268.5.L762. [DOI] [PubMed] [Google Scholar]
- Pringle K. C. Human fetal lung development and related animal models. Clin Obstet Gynecol. 1986 Sep;29(3):502–513. [PubMed] [Google Scholar]
- Rao A. K., Cott G. R. Ontogeny of ion transport across fetal pulmonary epithelial cells in monolayer culture. Am J Physiol. 1991 Aug;261(2 Pt 1):L178–L187. doi: 10.1152/ajplung.1991.261.2.L178. [DOI] [PubMed] [Google Scholar]
- Sakuma T., Okaniwa G., Nakada T., Nishimura T., Fujimura S., Matthay M. A. Alveolar fluid clearance in the resected human lung. Am J Respir Crit Care Med. 1994 Aug;150(2):305–310. doi: 10.1164/ajrccm.150.2.8049807. [DOI] [PubMed] [Google Scholar]
- Sakuma T., Pittet J. F., Jayr C., Matthay M. A. Alveolar liquid and protein clearance in the absence of blood flow or ventilation in sheep. J Appl Physiol (1985) 1993 Jan;74(1):176–185. doi: 10.1152/jappl.1993.74.1.176. [DOI] [PubMed] [Google Scholar]
- Schwiebert E. M., Potter E. D., Hwang T. H., Woo J. S., Ding C., Qiu W., Guggino W. B., Levine M. A., Guggino S. E. cGMP stimulates sodium and chloride currents in rat tracheal airway epithelia. Am J Physiol. 1997 Mar;272(3 Pt 1):C911–C922. doi: 10.1152/ajpcell.1997.272.3.C911. [DOI] [PubMed] [Google Scholar]
- Tchepichev S., Ueda J., Canessa C., Rossier B. C., O'Brodovich H. Lung epithelial Na channel subunits are differentially regulated during development and by steroids. Am J Physiol. 1995 Sep;269(3 Pt 1):C805–C812. doi: 10.1152/ajpcell.1995.269.3.C805. [DOI] [PubMed] [Google Scholar]
- Tibayan F. A., Chesnutt A. N., Folkesson H. G., Eandi J., Matthay M. A. Dobutamine increases alveolar liquid clearance in ventilated rats by beta-2 receptor stimulation. Am J Respir Crit Care Med. 1997 Aug;156(2 Pt 1):438–444. doi: 10.1164/ajrccm.156.2.9609141. [DOI] [PubMed] [Google Scholar]
- Voilley N., Lingueglia E., Champigny G., Mattéi M. G., Waldmann R., Lazdunski M., Barbry P. The lung amiloride-sensitive Na+ channel: biophysical properties, pharmacology, ontogenesis, and molecular cloning. Proc Natl Acad Sci U S A. 1994 Jan 4;91(1):247–251. doi: 10.1073/pnas.91.1.247. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Walters D. V., Olver R. E. The role of catecholamines in lung liquid absorption at birth. Pediatr Res. 1978 Mar;12(3):239–242. doi: 10.1203/00006450-197803000-00017. [DOI] [PubMed] [Google Scholar]
- Yue G., Matalon S. Mechanisms and sequelae of increased alveolar fluid clearance in hyperoxic rats. Am J Physiol. 1997 Mar;272(3 Pt 1):L407–L412. doi: 10.1152/ajplung.1997.272.3.L407. [DOI] [PubMed] [Google Scholar]
- van der Hoorn F. A., Boomsma F., Man in 't Veld A. J., Schalekamp M. A. Determination of catecholamines in human plasma by high-performance liquid chromatography: comparison between a new method with fluorescence detection and an established method with electrochemical detection. J Chromatogr. 1989 Jan 27;487(1):17–28. doi: 10.1016/s0378-4347(00)83003-0. [DOI] [PubMed] [Google Scholar]
