Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1998 Mar 1;101(5):1036–1044. doi: 10.1172/JCI1004

Human thiopurine methyltransferase pharmacogenetics. Kindred with a terminal exon splice junction mutation that results in loss of activity.

D M Otterness 1, C L Szumlanski 1, T C Wood 1, R M Weinshilboum 1
PMCID: PMC508655  PMID: 9486974

Abstract

Thiopurine methyltransferase (TPMT) catalyzes S-methylation of thiopurine drugs such as 6-mercaptopurine. Large variations in levels of TPMT activity in human tissue can result from a common genetic polymorphism with a series of alleles for low activity. This polymorphism is an important factor responsible for large individual variations in thiopurine toxicity and therapeutic efficacy. We now report a new variant allele, TPMT*4, that contains a G--> A transition that disrupts the intron/exon acceptor splice junction at the final 3' nucleotide of intron 9, the terminal intron of the TPMT gene. This new allele cosegregated within an extended kindred with reduced TPMT activity. We attempted to determine the mechanism(s) by which the presence of TPMT*4 might result in low enzyme activity. Although very few mature transcripts derived from allele TPMT*4 were detected, the mutation did lead to generation of at least two aberrant mRNA species. The first resulted from use of a novel splice site located one nucleotide 3' downstream from the original splice junction. That mRNA species contained a single nucleotide deletion and a frameshift within exon 10, the terminal exon of the gene. The second novel mRNA species resulted from activation of a cryptic splice site located within intron 9, leading to inclusion of 330 nucleotides of intron sequence. That sequence contained a premature translation termination codon. TPMT*4 is the first reported allele for low TPMT activity as a result of a mutation within an intron. These observations also provide insight into mechanisms of mRNA processing after disruption of a terminal exon splice junction.

Full Text

The Full Text of this article is available as a PDF (300.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Berg L. P., Soria J. M., Formstone C. J., Morell M., Kakkar V. V., Estivill X., Sala N., Cooper D. N. Aberrant RNA splicing of the protein C and protein S genes in healthy individuals. Blood Coagul Fibrinolysis. 1996 Sep;7(6):625–631. doi: 10.1097/00001721-199609000-00008. [DOI] [PubMed] [Google Scholar]
  2. Chadwick R. B., Conrad M. P., McGinnis M. D., Johnston-Dow L., Spurgeon S. L., Kronick M. N. Heterozygote and mutation detection by direct automated fluorescent DNA sequencing using a mutant Taq DNA polymerase. Biotechniques. 1996 Apr;20(4):676–683. doi: 10.2144/19962004676. [DOI] [PubMed] [Google Scholar]
  3. Cooper D. N., Krawczak M. Human Gene Mutation Database. Hum Genet. 1996 Nov;98(5):629–629. doi: 10.1007/s004390050272. [DOI] [PubMed] [Google Scholar]
  4. Deininger M., Szumlanski C. L., Otterness D. M., Van Loon J., Ferber W., Weinshilboum R. M. Purine substrates for human thiopurine methyltransferase. Biochem Pharmacol. 1994 Nov 29;48(11):2135–2138. doi: 10.1016/0006-2952(94)90515-0. [DOI] [PubMed] [Google Scholar]
  5. Evans W. E., Horner M., Chu Y. Q., Kalwinsky D., Roberts W. M. Altered mercaptopurine metabolism, toxic effects, and dosage requirement in a thiopurine methyltransferase-deficient child with acute lymphocytic leukemia. J Pediatr. 1991 Dec;119(6):985–989. doi: 10.1016/s0022-3476(05)83063-x. [DOI] [PubMed] [Google Scholar]
  6. Honchel R., Aksoy I. A., Szumlanski C., Wood T. C., Otterness D. M., Wieben E. D., Weinshilboum R. M. Human thiopurine methyltransferase: molecular cloning and expression of T84 colon carcinoma cell cDNA. Mol Pharmacol. 1993 Jun;43(6):878–887. [PubMed] [Google Scholar]
  7. Krawczak M., Reiss J., Cooper D. N. The mutational spectrum of single base-pair substitutions in mRNA splice junctions of human genes: causes and consequences. Hum Genet. 1992 Sep-Oct;90(1-2):41–54. doi: 10.1007/BF00210743. [DOI] [PubMed] [Google Scholar]
  8. Krynetski E. Y., Schuetz J. D., Galpin A. J., Pui C. H., Relling M. V., Evans W. E. A single point mutation leading to loss of catalytic activity in human thiopurine S-methyltransferase. Proc Natl Acad Sci U S A. 1995 Feb 14;92(4):949–953. doi: 10.1073/pnas.92.4.949. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Krynetski E. Y., Tai H. L., Yates C. R., Fessing M. Y., Loennechen T., Schuetz J. D., Relling M. V., Evans W. E. Genetic polymorphism of thiopurine S-methyltransferase: clinical importance and molecular mechanisms. Pharmacogenetics. 1996 Aug;6(4):279–290. doi: 10.1097/00008571-199608000-00001. [DOI] [PubMed] [Google Scholar]
  10. Lee D., Szumlanski C., Houtman J., Honchel R., Rojas K., Overhauser J., Wieben E. D., Weinshilboum R. M. Thiopurine methyltransferase pharmacogenetics. Cloning of human liver cDNA and a processed pseudogene on human chromosome 18q21.1. Drug Metab Dispos. 1995 Mar;23(3):398–405. [PubMed] [Google Scholar]
  11. Lennard L., Gibson B. E., Nicole T., Lilleyman J. S. Congenital thiopurine methyltransferase deficiency and 6-mercaptopurine toxicity during treatment for acute lymphoblastic leukaemia. Arch Dis Child. 1993 Nov;69(5):577–579. doi: 10.1136/adc.69.5.577. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Lennard L., Lilleyman J. S., Van Loon J., Weinshilboum R. M. Genetic variation in response to 6-mercaptopurine for childhood acute lymphoblastic leukaemia. Lancet. 1990 Jul 28;336(8709):225–229. doi: 10.1016/0140-6736(90)91745-v. [DOI] [PubMed] [Google Scholar]
  13. Lennard L., Van Loon J. A., Lilleyman J. S., Weinshilboum R. M. Thiopurine pharmacogenetics in leukemia: correlation of erythrocyte thiopurine methyltransferase activity and 6-thioguanine nucleotide concentrations. Clin Pharmacol Ther. 1987 Jan;41(1):18–25. doi: 10.1038/clpt.1987.4. [DOI] [PubMed] [Google Scholar]
  14. Lennard L., Van Loon J. A., Weinshilboum R. M. Pharmacogenetics of acute azathioprine toxicity: relationship to thiopurine methyltransferase genetic polymorphism. Clin Pharmacol Ther. 1989 Aug;46(2):149–154. doi: 10.1038/clpt.1989.119. [DOI] [PubMed] [Google Scholar]
  15. Lilleyman J. S., Lennard L. Mercaptopurine metabolism and risk of relapse in childhood lymphoblastic leukaemia. Lancet. 1994 May 14;343(8907):1188–1190. doi: 10.1016/s0140-6736(94)92400-7. [DOI] [PubMed] [Google Scholar]
  16. Maquat L. E. When cells stop making sense: effects of nonsense codons on RNA metabolism in vertebrate cells. RNA. 1995 Jul;1(5):453–465. [PMC free article] [PubMed] [Google Scholar]
  17. McManus J. F., Begley C. G., Ratnaike S. Complex pattern of alternative splicing in the normal uroporphyrinogen decarboxylase gene: implications for diagnosis of familial porphyria cutanea tarda. Clin Chem. 1994 Oct;40(10):1884–1889. [PubMed] [Google Scholar]
  18. Mount S. M. A catalogue of splice junction sequences. Nucleic Acids Res. 1982 Jan 22;10(2):459–472. doi: 10.1093/nar/10.2.459. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Nakai K., Sakamoto H. Construction of a novel database containing aberrant splicing mutations of mammalian genes. Gene. 1994 Apr 20;141(2):171–177. doi: 10.1016/0378-1119(94)90567-3. [DOI] [PubMed] [Google Scholar]
  20. Naylor J. A., Green P. M., Montandon A. J., Rizza C. R., Giannelli F. Detection of three novel mutations in two haemophilia A patients by rapid screening of whole essential region of factor VIII gene. Lancet. 1991 Mar 16;337(8742):635–639. doi: 10.1016/0140-6736(91)92450-g. [DOI] [PubMed] [Google Scholar]
  21. Otterness D., Szumlanski C., Lennard L., Klemetsdal B., Aarbakke J., Park-Hah J. O., Iven H., Schmiegelow K., Branum E., O'Brien J. Human thiopurine methyltransferase pharmacogenetics: gene sequence polymorphisms. Clin Pharmacol Ther. 1997 Jul;62(1):60–73. doi: 10.1016/S0009-9236(97)90152-1. [DOI] [PubMed] [Google Scholar]
  22. REMY C. N. Metabolism of thiopyrimidines and thiopurines. S-Methylation with S-adenosylmethionine transmethylase and catabolism in mammalian tissues. J Biol Chem. 1963 Mar;238:1078–1084. [PubMed] [Google Scholar]
  23. Schütz E., Gummert J., Mohr F., Oellerich M. Azathioprine-induced myelosuppression in thiopurine methyltransferase deficient heart transplant recipient. Lancet. 1993 Feb 13;341(8842):436–436. doi: 10.1016/0140-6736(93)93028-y. [DOI] [PubMed] [Google Scholar]
  24. Southern E. M. Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol. 1975 Nov 5;98(3):503–517. doi: 10.1016/s0022-2836(75)80083-0. [DOI] [PubMed] [Google Scholar]
  25. Surdej P., Riedl A., Jacobs-Lorena M. Regulation of mRNA stability in development. Annu Rev Genet. 1994;28:263–282. doi: 10.1146/annurev.ge.28.120194.001403. [DOI] [PubMed] [Google Scholar]
  26. Szumlanski C. L., Honchel R., Scott M. C., Weinshilboum R. M. Human liver thiopurine methyltransferase pharmacogenetics: biochemical properties, liver-erythrocyte correlation and presence of isozymes. Pharmacogenetics. 1992 Aug;2(4):148–159. [PubMed] [Google Scholar]
  27. Szumlanski C., Otterness D., Her C., Lee D., Brandriff B., Kelsell D., Spurr N., Lennard L., Wieben E., Weinshilboum R. Thiopurine methyltransferase pharmacogenetics: human gene cloning and characterization of a common polymorphism. DNA Cell Biol. 1996 Jan;15(1):17–30. doi: 10.1089/dna.1996.15.17. [DOI] [PubMed] [Google Scholar]
  28. Tai H. L., Krynetski E. Y., Yates C. R., Loennechen T., Fessing M. Y., Krynetskaia N. F., Evans W. E. Thiopurine S-methyltransferase deficiency: two nucleotide transitions define the most prevalent mutant allele associated with loss of catalytic activity in Caucasians. Am J Hum Genet. 1996 Apr;58(4):694–702. [PMC free article] [PubMed] [Google Scholar]
  29. Van Loon J. A., Weinshilboum R. M. Thiopurine methyltransferase biochemical genetics: human lymphocyte activity. Biochem Genet. 1982 Aug;20(7-8):637–658. doi: 10.1007/BF00483962. [DOI] [PubMed] [Google Scholar]
  30. Weinshilboum R. M. Methylation pharmacogenetics: thiopurine methyltransferase as a model system. Xenobiotica. 1992 Sep-Oct;22(9-10):1055–1071. doi: 10.3109/00498259209051860. [DOI] [PubMed] [Google Scholar]
  31. Weinshilboum R. M., Raymond F. A., Pazmiño P. A. Human erythrocyte thiopurine methyltransferase: radiochemical microassay and biochemical properties. Clin Chim Acta. 1978 May 2;85(3):323–333. doi: 10.1016/0009-8981(78)90311-x. [DOI] [PubMed] [Google Scholar]
  32. Weinshilboum R. M., Sladek S. L. Mercaptopurine pharmacogenetics: monogenic inheritance of erythrocyte thiopurine methyltransferase activity. Am J Hum Genet. 1980 Sep;32(5):651–662. [PMC free article] [PubMed] [Google Scholar]
  33. Weinshilboum R. Methyltransferase pharmacogenetics. Pharmacol Ther. 1989;43(1):77–90. doi: 10.1016/0163-7258(89)90048-x. [DOI] [PubMed] [Google Scholar]
  34. Woodson L. C., Dunnette J. H., Weinshilboum R. M. Pharmacogenetics of human thiopurine methyltransferase: kidney-erythrocyte correlation and immunotitration studies. J Pharmacol Exp Ther. 1982 Jul;222(1):174–181. [PubMed] [Google Scholar]
  35. Woodson L. C., Weinshilboum R. M. Human kidney thiopurine methyltransferase. Purification and biochemical properties. Biochem Pharmacol. 1983 Mar 1;32(5):819–826. doi: 10.1016/0006-2952(83)90582-8. [DOI] [PubMed] [Google Scholar]
  36. Yates C. R., Krynetski E. Y., Loennechen T., Fessing M. Y., Tai H. L., Pui C. H., Relling M. V., Evans W. E. Molecular diagnosis of thiopurine S-methyltransferase deficiency: genetic basis for azathioprine and mercaptopurine intolerance. Ann Intern Med. 1997 Apr 15;126(8):608–614. doi: 10.7326/0003-4819-126-8-199704150-00003. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES