Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1998 Mar 1;101(5):1045–1054. doi: 10.1172/JCI686

Potassium depletion downregulates chloride-absorbing transporters in rat kidney.

H Amlal 1, Z Wang 1, M Soleimani 1
PMCID: PMC508656  PMID: 9486975

Abstract

Potassium depletion (KD) causes renal chloride wasting, suggesting defect(s) in Cl- reabsorption in renal tubules. To determine whether alterations in expression of the major Cl- transporter genes might contribute to the chloride wasting, we analyzed their expression in renal cortex and medulla of animals placed on KD diet. Feeding KD diet to rats resulted in significant hypokalemia at 14 d but not at 6 d. Northern hybridization revealed that mRNA levels for the apical Na-K-2Cl cotransporter in the medulla decreased by 56 and 51% at 6 and 14 d of KD diet, respectively. Functional studies in tubular suspensions from medullary thick ascending limb demonstrated that the Na-K-2Cl cotransporter activity decreased by approximately 45 and approximately 37% at 6 and 14 d of KD diet, respectively. mRNA levels for the thiazide-sensitive Na-Cl cotransporter decreased by 57 and 64% at 6 and 14 d of KD diet. Decreased expression of the apical Na-Cl and the Na-K-2Cl cotransporters became evident at 48 and 72 h of KD, respectively. Urinary chloride excretion increased at 48 h and further increased at 72 h of KD, correlating with suppression of the Na-Cl and the Na-K-2Cl transporters. Our results indicate that increased urinary chloride loss in KD results from suppression of the chloride-absorbing transporters. Downregulation of chloride transporters in KD is an early event and can lead to hypochloremia and subsequently hypovolemia and decreased glomerular filtration rate.

Full Text

The Full Text of this article is available as a PDF (504.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Amlal H., Legoff C., Vernimmen C., Paillard M., Bichara M. Na(+)-K+(NH4+)-2Cl- cotransport in medullary thick ascending limb: control by PKA, PKC, and 20-HETE. Am J Physiol. 1996 Aug;271(2 Pt 1):C455–C463. doi: 10.1152/ajpcell.1996.271.2.C455. [DOI] [PubMed] [Google Scholar]
  2. Amlal H., Paillard M., Bichara M. Cl(-)-dependent NH4+ transport mechanisms in medullary thick ascending limb cells. Am J Physiol. 1994 Dec;267(6 Pt 1):C1607–C1615. doi: 10.1152/ajpcell.1994.267.6.C1607. [DOI] [PubMed] [Google Scholar]
  3. Amlal H., Paillard M., Bichara M. NH4+ transport pathways in cells of medullary thick ascending limb of rat kidney. NH4+ conductance and K+/NH4+(H+) antiport. J Biol Chem. 1994 Sep 2;269(35):21962–21971. [PubMed] [Google Scholar]
  4. BANK N., AYNEDJIAN H. S. A MICROPUNCTURE STUDY OF THE RENAL CONCENTRATING DEFECT OF POTASSIUM DEPLETION. Am J Physiol. 1964 Jun;206:1347–1354. doi: 10.1152/ajplegacy.1964.206.6.1347. [DOI] [PubMed] [Google Scholar]
  5. Buckalew V. M., Jr, Ramirez M. A., Goldberg M. Free water reabsorption during solute diuresis in normal and potassium-depleted rats. Am J Physiol. 1967 Feb;212(2):381–386. doi: 10.1152/ajplegacy.1967.212.2.381. [DOI] [PubMed] [Google Scholar]
  6. Burg M. B. Tubular chloride transport and the mode of action of some diuretics. Kidney Int. 1976 Feb;9(2):189–197. doi: 10.1038/ki.1976.20. [DOI] [PubMed] [Google Scholar]
  7. Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
  8. Church G. M., Gilbert W. Genomic sequencing. Proc Natl Acad Sci U S A. 1984 Apr;81(7):1991–1995. doi: 10.1073/pnas.81.7.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Delpire E., Rauchman M. I., Beier D. R., Hebert S. C., Gullans S. R. Molecular cloning and chromosome localization of a putative basolateral Na(+)-K(+)-2Cl- cotransporter from mouse inner medullary collecting duct (mIMCD-3) cells. J Biol Chem. 1994 Oct 14;269(41):25677–25683. [PubMed] [Google Scholar]
  10. Ellison D. H., Velázquez H., Wright F. S. Thiazide-sensitive sodium chloride cotransport in early distal tubule. Am J Physiol. 1987 Sep;253(3 Pt 2):F546–F554. doi: 10.1152/ajprenal.1987.253.3.F546. [DOI] [PubMed] [Google Scholar]
  11. Gamba G., Miyanoshita A., Lombardi M., Lytton J., Lee W. S., Hediger M. A., Hebert S. C. Molecular cloning, primary structure, and characterization of two members of the mammalian electroneutral sodium-(potassium)-chloride cotransporter family expressed in kidney. J Biol Chem. 1994 Jul 1;269(26):17713–17722. [PubMed] [Google Scholar]
  12. Garella S., Chazan J. A., Cohen J. J. Saline-resistant metabolic alkalosis or "chloride-wasting nephropathy". Report of four patients with severe potassium depletion. Ann Intern Med. 1970 Jul;73(1):31–38. doi: 10.7326/0003-4819-73-1-31. [DOI] [PubMed] [Google Scholar]
  13. Good D. W. Active absorption of NH4+ by rat medullary thick ascending limb: inhibition by potassium. Am J Physiol. 1988 Jul;255(1 Pt 2):F78–F87. doi: 10.1152/ajprenal.1988.255.1.F78. [DOI] [PubMed] [Google Scholar]
  14. Good D. W., Knepper M. A. Ammonia transport in the mammalian kidney. Am J Physiol. 1985 Apr;248(4 Pt 2):F459–F471. doi: 10.1152/ajprenal.1985.248.4.F459. [DOI] [PubMed] [Google Scholar]
  15. HOLLIDAY M. A., WINTERS R. W., WELT L. G., MACDOWELL M., OLIVER J. The renal lesions of electrolyte imbalance. II. The combined effect on renal architecture of phosphate loading and potassium depletion. J Exp Med. 1959 Aug 1;110(2):161–168. doi: 10.1084/jem.110.2.161. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. HOOK J. B., WILLIAMSON H. E. EFFECT OF FUROSEMIDE ON RENAL MEDULLARY SODIUM GRADIENT. Proc Soc Exp Biol Med. 1965 Feb;118:372–374. doi: 10.3181/00379727-118-29846. [DOI] [PubMed] [Google Scholar]
  17. Haas M., McManus T. J. Bumetanide inhibits (Na + K + 2Cl) co-transport at a chloride site. Am J Physiol. 1983 Sep;245(3):C235–C240. doi: 10.1152/ajpcell.1983.245.3.C235. [DOI] [PubMed] [Google Scholar]
  18. Hebert S. C., Andreoli T. E. Control of NaCl transport in the thick ascending limb. Am J Physiol. 1984 Jun;246(6 Pt 2):F745–F756. doi: 10.1152/ajprenal.1984.246.6.F745. [DOI] [PubMed] [Google Scholar]
  19. Kinne R., Kinne-Saffran E., Schütz H., Schölermann B. Ammonium transport in medullary thick ascending limb of rabbit kidney: involvement of the Na+,K+,Cl(-)-cotransporter. J Membr Biol. 1986;94(3):279–284. doi: 10.1007/BF01869723. [DOI] [PubMed] [Google Scholar]
  20. Kinsella J. L., Aronson P. S. Interaction of NH4+ and Li+ with the renal microvillus membrane Na+-H+ exchanger. Am J Physiol. 1981 Nov;241(5):C220–C226. doi: 10.1152/ajpcell.1981.241.5.C220. [DOI] [PubMed] [Google Scholar]
  21. Luke R. G., Booker B. B., Galla J. H. Effect of potassium depletion on chloride transport in the loop of Henle in the rat. Am J Physiol. 1985 May;248(5 Pt 2):F682–F687. doi: 10.1152/ajprenal.1985.248.5.F682. [DOI] [PubMed] [Google Scholar]
  22. Luke R. G., Levitin H. Impaired renal conservation of chloride and the acid-base changes associated with potassium depletion in the rat. Clin Sci. 1967 Jun;32(3):511–526. [PubMed] [Google Scholar]
  23. Luke R. G., Wright F. S., Fowler N., Kashgarian M., Giebisch G. H. Effects of potassium depletion on renal tubular chloride transport in the rat. Kidney Int. 1978 Nov;14(5):414–427. doi: 10.1038/ki.1978.146. [DOI] [PubMed] [Google Scholar]
  24. MANITIUS A., LEVITIN H., BECK D., EPSTEIN F. H. On the mechanism of impairment of renal concentrating ability in potassium deficiency. J Clin Invest. 1960 Apr;39:684–692. doi: 10.1172/JCI104084. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Marples D., Frøkiaer J., Dørup J., Knepper M. A., Nielsen S. Hypokalemia-induced downregulation of aquaporin-2 water channel expression in rat kidney medulla and cortex. J Clin Invest. 1996 Apr 15;97(8):1960–1968. doi: 10.1172/JCI118628. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. RELMAN A. S., SCHWARTZ W. B. The kidney in potassium depletion. Am J Med. 1958 May;24(5):764–773. doi: 10.1016/0002-9343(58)90379-6. [DOI] [PubMed] [Google Scholar]
  27. RELMAN A. S., SCHWARTZ W. B. The nephropathy of potassium depletion; a clinical and pathological entity. N Engl J Med. 1956 Aug 2;255(5):195–203. doi: 10.1056/NEJM195608022550501. [DOI] [PubMed] [Google Scholar]
  28. Rocha A. S., Kokko J. P. Sodium chloride and water transport in the medullary thick ascending limb of Henle. Evidence for active chloride transport. J Clin Invest. 1973 Mar;52(3):612–623. doi: 10.1172/JCI107223. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. STRUYVENBERG A., DE GRAEFF J., LAMEIJER L. D. THE ROLE OF CHLORIDE IN HYPOKALEMIC ALKALOSIS IN THE RAT. J Clin Invest. 1965 Feb;44:326–338. doi: 10.1172/JCI105146. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Soleimani M., Bergman J. A., Hosford M. A., McKinney T. D. Potassium depletion increases luminal Na+/H+ exchange and basolateral Na+:CO3=:HCO3- cotransport in rat renal cortex. J Clin Invest. 1990 Oct;86(4):1076–1083. doi: 10.1172/JCI114810. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Stokes J. B. Electroneutral NaCl transport in the distal tubule. Kidney Int. 1989 Sep;36(3):427–433. doi: 10.1038/ki.1989.212. [DOI] [PubMed] [Google Scholar]
  32. Tannen R. L. Relationship of renal ammonia production and potassium homeostasis. Kidney Int. 1977 Jun;11(6):453–465. doi: 10.1038/ki.1977.63. [DOI] [PubMed] [Google Scholar]
  33. Wang Z., Baird N., Shumaker H., Soleimani M. Potassium depletion and acid-base transporters in rat kidney: differential effect of hypophysectomy. Am J Physiol. 1997 Jun;272(6 Pt 2):F736–F743. doi: 10.1152/ajprenal.1997.272.6.F736. [DOI] [PubMed] [Google Scholar]
  34. Xu J. C., Lytle C., Zhu T. T., Payne J. A., Benz E., Jr, Forbush B., 3rd Molecular cloning and functional expression of the bumetanide-sensitive Na-K-Cl cotransporter. Proc Natl Acad Sci U S A. 1994 Mar 15;91(6):2201–2205. doi: 10.1073/pnas.91.6.2201. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Yang T., Huang Y. G., Singh I., Schnermann J., Briggs J. P. Localization of bumetanide- and thiazide-sensitive Na-K-Cl cotransporters along the rat nephron. Am J Physiol. 1996 Oct;271(4 Pt 2):F931–F939. doi: 10.1152/ajprenal.1996.271.4.F931. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES