Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1998 Mar 1;101(5):1064–1075. doi: 10.1172/JCI445

Native low density lipoprotein-induced calcium transients trigger VCAM-1 and E-selectin expression in cultured human vascular endothelial cells.

S Allen 1, S Khan 1, F Al-Mohanna 1, P Batten 1, M Yacoub 1
PMCID: PMC508658  PMID: 9486977

Abstract

Low density lipoprotein (LDL) interactions with the endothelium are thought to play a major role in the development of atherosclerosis. The mechanism(s) involved are not fully understood, although several lines of evidence support the idea that oxidation of LDL increases its atherogenicity. In this study we report for the first time that native LDL (n-LDL) binding to the LDL receptor (100-700 mug/ml) triggers a rise in intracellular calcium which acts as a second messenger to induce vascular cell adhesion molecule-1 (VCAM-1) expression in human coronary artery (HCAEC) and pig aortic endothelial cells (PAEC) and VCAM-1 and E-selectin expression in human aortic (HAEC) endothelial cells. Preincubation of HCAEC with a monoclonal antibody (IgGC7) to the classical LDL receptor or pretreatment with pertussis toxin blocked the n-LDL-induced calcium transients. Preincubation of each of the endothelial cell lines with the calcium chelator 1,-2-bis(o-aminophenoxy)ethane-N,N,N', N'-tetraacetic acetomethyl ester (BAPTA/AM) prevented the expression of VCAM-1 and E-selectin. The increase in VCAM-1 by n-LDL results in increased monocyte binding to HCAEC which can be attenuated by inhibiting the intracellular calcium rise or by blocking the VCAM-1 binding sites. These studies in human and pig endothelial cells link calcium signaling conferred by n-LDL to mechanisms controlling the expression of endothelial cell adhesion molecules involved in atherogenesis.

Full Text

The Full Text of this article is available as a PDF (501.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Avdonin P. V., Cheglakov I. B., Boogry E. M., Svitina-Ulitina I. V., Mazaev A. V., Tkachuk V. A. Evidence for the receptor-operated calcium channels in human platelet plasma membrane. Thromb Res. 1987 Apr 1;46(1):29–37. doi: 10.1016/0049-3848(87)90204-0. [DOI] [PubMed] [Google Scholar]
  2. Barbir M., Lazem F., Bowker T., Ludman P., Banner N., Mitchell A., Yacoub M. Determinants of transplant-related coronary calcium detected by ultrafast computed tomography scanning. Am J Cardiol. 1997 Jun 15;79(12):1606–1609. doi: 10.1016/s0002-9149(97)00207-5. [DOI] [PubMed] [Google Scholar]
  3. Batten P., Yacoub M. H., Rose M. L. Effect of human cytokines (IFN-gamma, TNF-alpha, IL-1 beta, IL-4) on porcine endothelial cells: induction of MHC and adhesion molecules and functional significance of these changes. Immunology. 1996 Jan;87(1):127–133. [PMC free article] [PubMed] [Google Scholar]
  4. Beisiegel U., Schneider W. J., Goldstein J. L., Anderson R. G., Brown M. S. Monoclonal antibodies to the low density lipoprotein receptor as probes for study of receptor-mediated endocytosis and the genetics of familial hypercholesterolemia. J Biol Chem. 1981 Nov 25;256(22):11923–11931. [PubMed] [Google Scholar]
  5. Block L. H., Knorr M., Vogt E., Locher R., Vetter W., Groscurth P., Qiao B. Y., Pometta D., James R., Regenass M. Low density lipoprotein causes general cellular activation with increased phosphatidylinositol turnover and lipoprotein catabolism. Proc Natl Acad Sci U S A. 1988 Feb;85(3):885–889. doi: 10.1073/pnas.85.3.885. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bochkov V. N., Tkachuk V. A., Hahn A. W., Bernhardt J., Buhler F. R., Resink T. J. Concerted effects of lipoproteins and angiotensin II on signal transduction processes in vascular smooth muscle cells. Arterioscler Thromb. 1993 Sep;13(9):1261–1269. doi: 10.1161/01.atv.13.9.1261. [DOI] [PubMed] [Google Scholar]
  7. Bochkov V. N., Tkachuk V. A., Kuzmenko Y. S., Borisova Y. L., Bühler F. R., Resink T. J. Characteristics of low and high density lipoprotein binding and lipoprotein-induced signaling in quiescent human vascular smooth muscle cells. Mol Pharmacol. 1994 Feb;45(2):262–270. [PubMed] [Google Scholar]
  8. Bochkov V., Tkachuk V., Buhler F., Resink T. Phosphoinositide and calcium signalling responses in smooth muscle cells: comparison between lipoproteins, Ang II, and PDGF. Biochem Biophys Res Commun. 1992 Nov 16;188(3):1295–1304. doi: 10.1016/0006-291x(92)91372-w. [DOI] [PubMed] [Google Scholar]
  9. Brown M. S., Basu S. K., Falck J. R., Ho Y. K., Goldstein J. L. The scavenger cell pathway for lipoprotein degradation: specificity of the binding site that mediates the uptake of negatively-charged LDL by macrophages. J Supramol Struct. 1980;13(1):67–81. doi: 10.1002/jss.400130107. [DOI] [PubMed] [Google Scholar]
  10. Collison K. S., Kwaasi A. A., Parhar R. S., al-Sedairy S. T., al-Mohanna F. A. Monomeric human IgE evokes a transient calcium rise in individual human neutrophils. J Leukoc Biol. 1995 Oct;58(4):459–467. doi: 10.1002/jlb.58.4.459. [DOI] [PubMed] [Google Scholar]
  11. Cushing S. D., Berliner J. A., Valente A. J., Territo M. C., Navab M., Parhami F., Gerrity R., Schwartz C. J., Fogelman A. M. Minimally modified low density lipoprotein induces monocyte chemotactic protein 1 in human endothelial cells and smooth muscle cells. Proc Natl Acad Sci U S A. 1990 Jul;87(13):5134–5138. doi: 10.1073/pnas.87.13.5134. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Cybulsky M. I., Gimbrone M. A., Jr Endothelial expression of a mononuclear leukocyte adhesion molecule during atherogenesis. Science. 1991 Feb 15;251(4995):788–791. doi: 10.1126/science.1990440. [DOI] [PubMed] [Google Scholar]
  13. Faruqi R. M., DiCorleto P. E. Mechanisms of monocyte recruitment and accumulation. Br Heart J. 1993 Jan;69(1 Suppl):S19–S29. doi: 10.1136/hrt.69.1_suppl.s19. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Gauthier T. W., Scalia R., Murohara T., Guo J. P., Lefer A. M. Nitric oxide protects against leukocyte-endothelium interactions in the early stages of hypercholesterolemia. Arterioscler Thromb Vasc Biol. 1995 Oct;15(10):1652–1659. doi: 10.1161/01.atv.15.10.1652. [DOI] [PubMed] [Google Scholar]
  15. Hackman A., Abe Y., Insull W., Jr, Pownall H., Smith L., Dunn K., Gotto A. M., Jr, Ballantyne C. M. Levels of soluble cell adhesion molecules in patients with dyslipidemia. Circulation. 1996 Apr 1;93(7):1334–1338. doi: 10.1161/01.cir.93.7.1334. [DOI] [PubMed] [Google Scholar]
  16. Haller H., Schaper D., Ziegler W., Philipp S., Kuhlmann M., Distler A., Luft F. C. Low-density lipoprotein induces vascular adhesion molecule expression on human endothelial cells. Hypertension. 1995 Apr;25(4 Pt 1):511–516. doi: 10.1161/01.hyp.25.4.511. [DOI] [PubMed] [Google Scholar]
  17. Henry P. D., Bentley K. I. Suppression of atherogenesis in cholesterol-fed rabbit treated with nifedipine. J Clin Invest. 1981 Nov;68(5):1366–1369. doi: 10.1172/JCI110384. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Ho A. K., Chik C. L., Klein D. C. Effects of protein kinase inhibitor (1-(5-isoquinolinesulfonyl)-2-methylpiperazine (H7) on protein kinase C activity and adrenergic stimulation of cAMP and cGMP in rat pinealocytes. Biochem Pharmacol. 1988 Mar 15;37(6):1015–1020. doi: 10.1016/0006-2952(88)90503-5. [DOI] [PubMed] [Google Scholar]
  19. Johnson R. C., Mayadas T. N., Frenette P. S., Mebius R. E., Subramaniam M., Lacasce A., Hynes R. O., Wagner D. D. Blood cell dynamics in P-selectin-deficient mice. Blood. 1995 Aug 1;86(3):1106–1114. [PubMed] [Google Scholar]
  20. Kiss Z. Effects of phorbol ester on phospholipid metabolism. Prog Lipid Res. 1990;29(3):141–166. doi: 10.1016/0163-7827(90)90001-2. [DOI] [PubMed] [Google Scholar]
  21. Kume N., Cybulsky M. I., Gimbrone M. A., Jr Lysophosphatidylcholine, a component of atherogenic lipoproteins, induces mononuclear leukocyte adhesion molecules in cultured human and rabbit arterial endothelial cells. J Clin Invest. 1992 Sep;90(3):1138–1144. doi: 10.1172/JCI115932. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Li H., Cybulsky M. I., Gimbrone M. A., Jr, Libby P. An atherogenic diet rapidly induces VCAM-1, a cytokine-regulatable mononuclear leukocyte adhesion molecule, in rabbit aortic endothelium. Arterioscler Thromb. 1993 Feb;13(2):197–204. doi: 10.1161/01.atv.13.2.197. [DOI] [PubMed] [Google Scholar]
  23. Locher R., Sachinidis A., Steiner A., Vetter W. Attenuation of the low-density-lipoprotein-activated phosphoinositide signalling system by calcium blockers in human lymphocytes. Clin Sci (Lond) 1990 May;78(5):509–514. doi: 10.1042/cs0780509. [DOI] [PubMed] [Google Scholar]
  24. Lum H., Del Vecchio P. J., Schneider A. S., Goligorsky M. S., Malik A. B. Calcium dependence of the thrombin-induced increase in endothelial albumin permeability. J Appl Physiol (1985) 1989 Mar;66(3):1471–1476. doi: 10.1152/jappl.1989.66.3.1471. [DOI] [PubMed] [Google Scholar]
  25. Lynch J. J., Ferro T. J., Blumenstock F. A., Brockenauer A. M., Malik A. B. Increased endothelial albumin permeability mediated by protein kinase C activation. J Clin Invest. 1990 Jun;85(6):1991–1998. doi: 10.1172/JCI114663. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Marlor C. W., Webb D. L., Bombara M. P., Greve J. M., Blue M. L. Expression of vascular cell adhesion molecule-1 in fibroblastlike synoviocytes after stimulation with tumor necrosis factor. Am J Pathol. 1992 May;140(5):1055–1060. [PMC free article] [PubMed] [Google Scholar]
  27. May W. S., Jr, Sahyoun N., Wolf M., Cuatrecasas P. Role of intracellular calcium mobilization in the regulation of protein kinase C-mediated membrane processes. Nature. 1985 Oct 10;317(6037):549–551. doi: 10.1038/317549a0. [DOI] [PubMed] [Google Scholar]
  28. McEver R. P. GMP-140: a receptor for neutrophils and monocytes on activated platelets and endothelium. J Cell Biochem. 1991 Feb;45(2):156–161. doi: 10.1002/jcb.240450206. [DOI] [PubMed] [Google Scholar]
  29. McEver R. P. Leukocyte-endothelial cell interactions. Curr Opin Cell Biol. 1992 Oct;4(5):840–849. doi: 10.1016/0955-0674(92)90109-p. [DOI] [PubMed] [Google Scholar]
  30. Mehta A., Yang B., Khan S., Hendricks J. B., Stephen C., Mehta J. L. Oxidized low-density lipoproteins facilitate leukocyte adhesion to aortic intima without affecting endothelium-dependent relaxation. Role of P-selectin. Arterioscler Thromb Vasc Biol. 1995 Nov;15(11):2076–2083. doi: 10.1161/01.atv.15.11.2076. [DOI] [PubMed] [Google Scholar]
  31. Morita R., Morimoto S., Koh E., Fukuo K., Kim S., Itoh K., Taniguchi K., Onishi T., Ogihara T. Low density lipoprotein and apoprotein B induce increases in inositol trisphosphate and cytosolic free Ca2+ via pertussis toxin-sensitive GTP-binding protein in vascular smooth muscle cells. Biochem Int. 1989 Mar;18(3):647–653. [PubMed] [Google Scholar]
  32. Murohara T., Scalia R., Lefer A. M. Lysophosphatidylcholine promotes P-selectin expression in platelets and endothelial cells. Possible involvement of protein kinase C activation and its inhibition by nitric oxide donors. Circ Res. 1996 May;78(5):780–789. doi: 10.1161/01.res.78.5.780. [DOI] [PubMed] [Google Scholar]
  33. Murohara T., Scalia R., Lefer A. M. Lysophosphatidylcholine promotes P-selectin expression in platelets and endothelial cells. Possible involvement of protein kinase C activation and its inhibition by nitric oxide donors. Circ Res. 1996 May;78(5):780–789. doi: 10.1161/01.res.78.5.780. [DOI] [PubMed] [Google Scholar]
  34. Nègre-Salvayre A., Fitoussi G., Réaud V., Pieraggi M. T., Thiers J. C., Salvayre R. A delayed and sustained rise of cytosolic calcium is elicited by oxidized LDL in cultured bovine aortic endothelial cells. FEBS Lett. 1992 Mar 24;299(1):60–65. doi: 10.1016/0014-5793(92)80101-l. [DOI] [PubMed] [Google Scholar]
  35. Page C., Rose M., Yacoub M., Pigott R. Antigenic heterogeneity of vascular endothelium. Am J Pathol. 1992 Sep;141(3):673–683. [PMC free article] [PubMed] [Google Scholar]
  36. Parker P. J., Coussens L., Totty N., Rhee L., Young S., Chen E., Stabel S., Waterfield M. D., Ullrich A. The complete primary structure of protein kinase C--the major phorbol ester receptor. Science. 1986 Aug 22;233(4766):853–859. doi: 10.1126/science.3755547. [DOI] [PubMed] [Google Scholar]
  37. Parthasarathy S., Steinberg D., Witztum J. L. The role of oxidized low-density lipoproteins in the pathogenesis of atherosclerosis. Annu Rev Med. 1992;43:219–225. doi: 10.1146/annurev.me.43.020192.001251. [DOI] [PubMed] [Google Scholar]
  38. Phair R. D. Cellular calcium and atherosclerosis: a brief review. Cell Calcium. 1988 Dec;9(5-6):275–284. doi: 10.1016/0143-4160(88)90008-5. [DOI] [PubMed] [Google Scholar]
  39. Pritchard K. A., Jr, Tota R. R., Lin J. H., Danishefsky K. J., Kurilla B. A., Holland J. A., Stemerman M. B. Native low density lipoprotein. Endothelial cell recruitment of mononuclear cells. Arterioscler Thromb. 1991 Sep-Oct;11(5):1175–1181. doi: 10.1161/01.atv.11.5.1175. [DOI] [PubMed] [Google Scholar]
  40. Rajavashisth T. B., Andalibi A., Territo M. C., Berliner J. A., Navab M., Fogelman A. M., Lusis A. J. Induction of endothelial cell expression of granulocyte and macrophage colony-stimulating factors by modified low-density lipoproteins. Nature. 1990 Mar 15;344(6263):254–257. doi: 10.1038/344254a0. [DOI] [PubMed] [Google Scholar]
  41. Rosenfeld M. E., Tsukada T., Gown A. M., Ross R. Fatty streak initiation in Watanabe Heritable Hyperlipemic and comparably hypercholesterolemic fat-fed rabbits. Arteriosclerosis. 1987 Jan-Feb;7(1):9–23. doi: 10.1161/01.atv.7.1.9. [DOI] [PubMed] [Google Scholar]
  42. Rubenstein B., Evans S., Steiner G. A new method for the fractionation of human plasma high density lipoprotein. Can J Biochem. 1977 Jul;55(7):766–768. doi: 10.1139/o77-110. [DOI] [PubMed] [Google Scholar]
  43. Rudel L. L., Lee J. A., Morris M. D., Felts J. M. Characterization of plasma lipoproteins separated and purified by agarose-column chromatography. Biochem J. 1974 Apr;139(1):89–95. doi: 10.1042/bj1390089. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Sachinidis A., Locher R., Mengden T., Vetter W. Low-density lipoprotein elevates intracellular calcium and pH in vascular smooth muscle cells and fibroblasts without mediation of LDL receptor. Biochem Biophys Res Commun. 1990 Feb 28;167(1):353–359. doi: 10.1016/0006-291x(90)91772-k. [DOI] [PubMed] [Google Scholar]
  45. Schaefer H. I., Höld K. M., Egas-Kenniphaas J. M., van der Laarse A. Intracellular calcium signalling after binding of low-density lipoprotein to confluent and nonconfluent cultures of an endothelial cell line, EA.hy 926. Cell Calcium. 1993 Jun;14(6):507–516. doi: 10.1016/0143-4160(93)90009-u. [DOI] [PubMed] [Google Scholar]
  46. Scott-Burden T., Resink T. J., Hahn A. W., Baur U., Box R. J., Bühler F. R. Induction of growth-related metabolism in human vascular smooth muscle cells by low density lipoprotein. J Biol Chem. 1989 Jul 25;264(21):12582–12589. [PubMed] [Google Scholar]
  47. Shepherd J., Cobbe S. M., Ford I., Isles C. G., Lorimer A. R., MacFarlane P. W., McKillop J. H., Packard C. J. Prevention of coronary heart disease with pravastatin in men with hypercholesterolemia. West of Scotland Coronary Prevention Study Group. N Engl J Med. 1995 Nov 16;333(20):1301–1307. doi: 10.1056/NEJM199511163332001. [DOI] [PubMed] [Google Scholar]
  48. Smalley D. M., Lin J. H., Curtis M. L., Kobari Y., Stemerman M. B., Pritchard K. A., Jr Native LDL increases endothelial cell adhesiveness by inducing intercellular adhesion molecule-1. Arterioscler Thromb Vasc Biol. 1996 Apr;16(4):585–590. doi: 10.1161/01.atv.16.4.585. [DOI] [PubMed] [Google Scholar]
  49. Smirnov V. N., Voyno-Yasenetskaya T. A., Antonov A. S., Lukashev M. E., Shirinsky V. P., Tertov V. V., Tkachuk V. A. Vascular signal transduction and atherosclerosis. Ann N Y Acad Sci. 1990;598:167–181. doi: 10.1111/j.1749-6632.1990.tb42288.x. [DOI] [PubMed] [Google Scholar]
  50. Steinberg D., Witztum J. L. Lipoproteins and atherogenesis. Current concepts. JAMA. 1990 Dec 19;264(23):3047–3052. [PubMed] [Google Scholar]
  51. Streb H., Irvine R. F., Berridge M. J., Schulz I. Release of Ca2+ from a nonmitochondrial intracellular store in pancreatic acinar cells by inositol-1,4,5-trisphosphate. Nature. 1983 Nov 3;306(5938):67–69. doi: 10.1038/306067a0. [DOI] [PubMed] [Google Scholar]
  52. Strickberger S. A., Russek L. N., Phair R. D. Evidence for increased aortic plasma membrane calcium transport caused by experimental atherosclerosis in rabbits. Circ Res. 1988 Jan;62(1):75–80. doi: 10.1161/01.res.62.1.75. [DOI] [PubMed] [Google Scholar]
  53. Taylor P. M., Rose M. L., Yacoub M. H. Coronary artery immunogenicity: a comparison between explanted recipient or donor hearts and transplanted hearts. Transpl Immunol. 1993;1(4):294–301. doi: 10.1016/0966-3274(93)90038-a. [DOI] [PubMed] [Google Scholar]
  54. Wood K. M., Cadogan M. D., Ramshaw A. L., Parums D. V. The distribution of adhesion molecules in human atherosclerosis. Histopathology. 1993 May;22(5):437–444. doi: 10.1111/j.1365-2559.1993.tb00157.x. [DOI] [PubMed] [Google Scholar]
  55. Ylä-Herttuala S., Rosenfeld M. E., Parthasarathy S., Sigal E., Särkioja T., Witztum J. L., Steinberg D. Gene expression in macrophage-rich human atherosclerotic lesions. 15-lipoxygenase and acetyl low density lipoprotein receptor messenger RNA colocalize with oxidation specific lipid-protein adducts. J Clin Invest. 1991 Apr;87(4):1146–1152. doi: 10.1172/JCI115111. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Zimmerman G. A., Prescott S. M., McIntyre T. M. Endothelial cell interactions with granulocytes: tethering and signaling molecules. Immunol Today. 1992 Mar;13(3):93–100. doi: 10.1016/0167-5699(92)90149-2. [DOI] [PubMed] [Google Scholar]
  57. al-Mohanna F., Collison K., Parhar R., Kwaasi A., Meyer B., Saleh S., Allen S., al-Sedairy S., Stern D., Yacoub M. Activation of naive xenogeneic but not allogeneic endothelial cells by human naive neutrophils: a potential occult barrier to xenotransplantation. Am J Pathol. 1997 Jul;151(1):111–120. [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES