Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1998 Mar 1;101(5):1084–1093. doi: 10.1172/JCI1847

Identification of the low density lipoprotein receptor-binding site in apolipoprotein B100 and the modulation of its binding activity by the carboxyl terminus in familial defective apo-B100.

J Boren 1, I Lee 1, W Zhu 1, K Arnold 1, S Taylor 1, T L Innerarity 1
PMCID: PMC508660  PMID: 9486979

Abstract

Familial defective apolipoprotein B100 (FDB) is caused by a mutation of apo-B100 (R3500Q) that disrupts the receptor binding of low density lipoproteins (LDL), which leads to hypercholesterolemia and premature atherosclerosis. In this study, mutant forms of human apo-B were expressed in transgenic mice, and the resulting human recombinant LDL were purified and tested for their receptor-binding activity. Site-directed mutagenesis and other evidence indicated that Site B (amino acids 3,359-3,369) binds to the LDL receptor and that arginine-3,500 is not directly involved in receptor binding. The carboxyl-terminal 20% of apo-B100 is necessary for the R3500Q mutation to disrupt receptor binding, since removal of the carboxyl terminus in FDB LDL results in normal receptor-binding activity. Similarly, removal of the carboxyl terminus of apo-B100 on receptor-inactive VLDL dramatically increases apo-B-mediated receptor-binding activity. We propose that the carboxyl terminus normally functions to inhibit the interaction of apo-B100 VLDL with the LDL receptor, but after the conversion of triglyceride-rich VLDL to smaller cholesterol-rich LDL, arginine-3,500 interacts with the carboxyl terminus, permitting normal interaction between LDL and its receptor. Moreover, the loss of arginine at this site destabilizes this interaction, resulting in receptor-binding defective LDL.

Full Text

The Full Text of this article is available as a PDF (320.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aviram M., Lund-Katz S., Phillips M. C., Chait A. The influence of the triglyceride content of low density lipoprotein on the interaction of apolipoprotein B-100 with cells. J Biol Chem. 1988 Nov 15;263(32):16842–16848. [PubMed] [Google Scholar]
  2. Borchardt R. A., Davis R. A. Intrahepatic assembly of very low density lipoproteins. Rate of transport out of the endoplasmic reticulum determines rate of secretion. J Biol Chem. 1987 Dec 5;262(34):16394–16402. [PubMed] [Google Scholar]
  3. Borén J., Lee I., Callow M. J., Rubin E. M., Innerarity T. L. A simple and efficient method for making site-directed mutants, deletions, and fusions of large DNA such as P1 and BAC clones. Genome Res. 1996 Nov;6(11):1123–1130. doi: 10.1101/gr.6.11.1123. [DOI] [PubMed] [Google Scholar]
  4. Chatterton J. E., Phillips M. L., Curtiss L. K., Milne R., Fruchart J. C., Schumaker V. N. Immunoelectron microscopy of low density lipoproteins yields a ribbon and bow model for the conformation of apolipoprotein B on the lipoprotein surface. J Lipid Res. 1995 Sep;36(9):2027–2037. [PubMed] [Google Scholar]
  5. Chiesa G., Johnson D. F., Yao Z., Innerarity T. L., Mahley R. W., Young S. G., Hammer R. H., Hobbs H. H. Expression of human apolipoprotein B100 in transgenic mice. Editing of human apolipoprotein B100 mRNA. J Biol Chem. 1993 Nov 15;268(32):23747–23750. [PubMed] [Google Scholar]
  6. Farese R. V., Jr, Véniant M. M., Cham C. M., Flynn L. M., Pierotti V., Loring J. F., Traber M., Ruland S., Stokowski R. S., Huszar D. Phenotypic analysis of mice expressing exclusively apolipoprotein B48 or apolipoprotein B100. Proc Natl Acad Sci U S A. 1996 Jun 25;93(13):6393–6398. doi: 10.1073/pnas.93.13.6393. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Forte T. M., Nordhausen R. W. Electron microscopy of negatively stained lipoproteins. Methods Enzymol. 1986;128:442–457. doi: 10.1016/0076-6879(86)28086-6. [DOI] [PubMed] [Google Scholar]
  8. Gaffney D., Reid J. M., Cameron I. M., Vass K., Caslake M. J., Shepherd J., Packard C. J. Independent mutations at codon 3500 of the apolipoprotein B gene are associated with hyperlipidemia. Arterioscler Thromb Vasc Biol. 1995 Aug;15(8):1025–1029. doi: 10.1161/01.atv.15.8.1025. [DOI] [PubMed] [Google Scholar]
  9. Goldstein J. L., Brown M. S., Anderson R. G., Russell D. W., Schneider W. J. Receptor-mediated endocytosis: concepts emerging from the LDL receptor system. Annu Rev Cell Biol. 1985;1:1–39. doi: 10.1146/annurev.cb.01.110185.000245. [DOI] [PubMed] [Google Scholar]
  10. Hobbs H. H., Brown M. S., Goldstein J. L. Molecular genetics of the LDL receptor gene in familial hypercholesterolemia. Hum Mutat. 1992;1(6):445–466. doi: 10.1002/humu.1380010602. [DOI] [PubMed] [Google Scholar]
  11. Innerarity T. L., Mahley R. W., Weisgraber K. H., Bersot T. P., Krauss R. M., Vega G. L., Grundy S. M., Friedl W., Davignon J., McCarthy B. J. Familial defective apolipoprotein B-100: a mutation of apolipoprotein B that causes hypercholesterolemia. J Lipid Res. 1990 Aug;31(8):1337–1349. [PubMed] [Google Scholar]
  12. Innerarity T. L., Weisgraber K. H., Arnold K. S., Mahley R. W., Krauss R. M., Vega G. L., Grundy S. M. Familial defective apolipoprotein B-100: low density lipoproteins with abnormal receptor binding. Proc Natl Acad Sci U S A. 1987 Oct;84(19):6919–6923. doi: 10.1073/pnas.84.19.6919. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Kleinman Y., Schonfeld G., Gavish D., Oschry Y., Eisenberg S. Hypolipidemic therapy modulates expression of apolipoprotein B epitopes on low density lipoproteins. Studies in mild to moderate hypertriglyceridemic patients. J Lipid Res. 1987 May;28(5):540–548. [PubMed] [Google Scholar]
  14. Knott T. J., Rall S. C., Jr, Innerarity T. L., Jacobson S. F., Urdea M. S., Levy-Wilson B., Powell L. M., Pease R. J., Eddy R., Nakai H. Human apolipoprotein B: structure of carboxyl-terminal domains, sites of gene expression, and chromosomal localization. Science. 1985 Oct 4;230(4721):37–43. doi: 10.1126/science.2994225. [DOI] [PubMed] [Google Scholar]
  15. Krul E. S., Parhofer K. G., Barrett P. H., Wagner R. D., Schonfeld G. ApoB-75, a truncation of apolipoprotein B associated with familial hypobetalipoproteinemia: genetic and kinetic studies. J Lipid Res. 1992 Jul;33(7):1037–1050. [PubMed] [Google Scholar]
  16. Law A., Scott J. A cross-species comparison of the apolipoprotein B domain that binds to the LDL receptor. J Lipid Res. 1990 Jun;31(6):1109–1120. [PubMed] [Google Scholar]
  17. Linton M. F., Farese R. V., Jr, Chiesa G., Grass D. S., Chin P., Hammer R. E., Hobbs H. H., Young S. G. Transgenic mice expressing high plasma concentrations of human apolipoprotein B100 and lipoprotein(a). J Clin Invest. 1993 Dec;92(6):3029–3037. doi: 10.1172/JCI116927. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Lund-Katz S., Innerarity T. L., Arnold K. S., Curtiss L. K., Phillips M. C. 13C NMR evidence that substitution of glutamine for arginine 3500 in familial defective apolipoprotein B-100 disrupts the conformation of the receptor-binding domain. J Biol Chem. 1991 Feb 15;266(5):2701–2704. [PubMed] [Google Scholar]
  19. Mahley R. W. Apolipoprotein E: cholesterol transport protein with expanding role in cell biology. Science. 1988 Apr 29;240(4852):622–630. doi: 10.1126/science.3283935. [DOI] [PubMed] [Google Scholar]
  20. Mahley R. W., Innerarity T. L., Pitas R. E., Weisgraber K. H., Brown J. H., Gross E. Inhibition of lipoprotein binding to cell surface receptors of fibroblasts following selective modification of arginyl residues in arginine-rich and B apoproteins. J Biol Chem. 1977 Oct 25;252(20):7279–7287. [PubMed] [Google Scholar]
  21. McCormick S. P., Linton M. F., Young S. G. Expression of P1 DNA in mammalian cells and transgenic mice. Genet Anal Tech Appl. 1994;11(5-6):158–164. doi: 10.1016/1050-3862(94)90036-1. [DOI] [PubMed] [Google Scholar]
  22. McCormick S. P., Ng J. K., Véniant M., Borén J., Pierotti V., Flynn L. M., Grass D. S., ConnollyA, Young S. G. Transgenic mice that overexpress mouse apolipoprotein B. Evidence that the DNA sequences controlling intestinal expression of the apolipoprotein B gene are distant from the structural gene. J Biol Chem. 1996 May 17;271(20):11963–11970. doi: 10.1074/jbc.271.20.11963. [DOI] [PubMed] [Google Scholar]
  23. Milne R. W., Theolis R., Jr, Verdery R. B., Marcel Y. L. Characterization of monoclonal antibodies against human low density lipoprotein. Arteriosclerosis. 1983 Jan-Feb;3(1):23–30. doi: 10.1161/01.atv.3.1.23. [DOI] [PubMed] [Google Scholar]
  24. Milne R., Théolis R., Jr, Maurice R., Pease R. J., Weech P. K., Rassart E., Fruchart J. C., Scott J., Marcel Y. L. The use of monoclonal antibodies to localize the low density lipoprotein receptor-binding domain of apolipoprotein B. J Biol Chem. 1989 Nov 25;264(33):19754–19760. [PubMed] [Google Scholar]
  25. Parhofer K. G., Daugherty A., Kinoshita M., Schonfeld G. Enhanced clearance from plasma of low density lipoproteins containing a truncated apolipoprotein, apoB-89. J Lipid Res. 1990 Nov;31(11):2001–2007. [PubMed] [Google Scholar]
  26. Pullinger C. R., Hennessy L. K., Chatterton J. E., Liu W., Love J. A., Mendel C. M., Frost P. H., Malloy M. J., Schumaker V. N., Kane J. P. Familial ligand-defective apolipoprotein B. Identification of a new mutation that decreases LDL receptor binding affinity. J Clin Invest. 1995 Mar;95(3):1225–1234. doi: 10.1172/JCI117772. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Weisgraber K. H., Innerarity T. L., Mahley R. W. Role of lysine residues of plasma lipoproteins in high affinity binding to cell surface receptors on human fibroblasts. J Biol Chem. 1978 Dec 25;253(24):9053–9062. [PubMed] [Google Scholar]
  28. Weisgraber K. H., Innerarity T. L., Newhouse Y. M., Young S. G., Arnold K. S., Krauss R. M., Vega G. L., Grundy S. M., Mahley R. W. Familial defective apolipoprotein B-100: enhanced binding of monoclonal antibody MB47 to abnormal low density lipoproteins. Proc Natl Acad Sci U S A. 1988 Dec;85(24):9758–9762. doi: 10.1073/pnas.85.24.9758. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Weisgraber K. H., Rall S. C., Jr Human apolipoprotein B-100 heparin-binding sites. J Biol Chem. 1987 Aug 15;262(23):11097–11103. [PubMed] [Google Scholar]
  30. Welty F. K., Seman L., Yen F. T. Purification of the apolipoprotein B-67-containing low density lipoprotein particle and its affinity for the low density lipoprotein receptor. J Lipid Res. 1995 Dec;36(12):2622–2629. [PubMed] [Google Scholar]
  31. Yao Z. M., Blackhart B. D., Johnson D. F., Taylor S. M., Haubold K. W., McCarthy B. J. Elimination of apolipoprotein B48 formation in rat hepatoma cell lines transfected with mutant human apolipoprotein B cDNA constructs. J Biol Chem. 1992 Jan 15;267(2):1175–1182. [PubMed] [Google Scholar]
  32. Young S. G., Koduri R. K., Austin R. K., Bonnet D. J., Smith R. S., Curtiss L. K. Definition of a nonlinear conformational epitope for the apolipoprotein B-100-specific monoclonal antibody, MB47. J Lipid Res. 1994 Mar;35(3):399–407. [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES