Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1998 Mar 1;101(5):1094–1101. doi: 10.1172/JCI420

Chronic exposure to free fatty acid reduces pancreatic beta cell insulin content by increasing basal insulin secretion that is not compensated for by a corresponding increase in proinsulin biosynthesis translation.

L C Bollheimer 1, R H Skelly 1, M W Chester 1, J D McGarry 1, C J Rhodes 1
PMCID: PMC508661  PMID: 9486980

Abstract

The pancreatic beta cell normally maintains a stable balance among insulin secretion, insulin production, and insulin degradation to keep optimal intracellular stores of the hormone. Elevated levels of FFA markedly enhance insulin secretion; however, the effects of FFA on insulin production and intracellular stores remain unclear. In this study, twofold elevation in total circulating FFA effected by infusion of lard oil and heparin into rats for 6 h under normoglycemic conditions resulted in a marked elevation of circulating insulin levels evident after 4 h, and a 30% decrease in pancreatic insulin content after a 6-h infusion in vivo. Adding 125 muM oleate to isolated rat pancreatic islets cultured with 5.6 mM glucose caused a 50% fall in their insulin content over 24 h, coupled with a marked enhancement of basal insulin secretion. Both effects of fatty acid were blocked by somatostatin. In contrast to the stimulatory effects of oleate on insulin secretion, glucose-induced proinsulin biosynthesis was inhibited by oleate up to 24 h, but was unaffected thereafter. This result was in spite of a two- to threefold oleate-induced increase in preproinsulin mRNA levels, underscoring the importance of translational regulation of proinsulin biosynthesis in maintaining beta cell insulin stores. Collectively, these results suggest that chronically elevated FFA contribute to beta cell dysfunction in the pathogenesis of NIDDM by significantly increasing the basal rate of insulin secretion. This increase in turn results in a decrease in the beta cell's intracellular stores that cannot be offset by commensurate FFA induction of proinsulin biosynthesis.

Full Text

The Full Text of this article is available as a PDF (414.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alarcón C., Leahy J. L., Schuppin G. T., Rhodes C. J. Increased secretory demand rather than a defect in the proinsulin conversion mechanism causes hyperproinsulinemia in a glucose-infusion rat model of non-insulin-dependent diabetes mellitus. J Clin Invest. 1995 Mar;95(3):1032–1039. doi: 10.1172/JCI117748. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Alarcón C., Lincoln B., Rhodes C. J. The biosynthesis of the subtilisin-related proprotein convertase PC3, but no that of the PC2 convertase, is regulated by glucose in parallel to proinsulin biosynthesis in rat pancreatic islets. J Biol Chem. 1993 Feb 25;268(6):4276–4280. [PubMed] [Google Scholar]
  3. Andersson A., Asplund K., Larkins R. Insulin production by pancreatic islets of obese-hyperglycemic mice cultured for one week in different glucose concentrations. Acta Physiol Scand. 1978 Dec;104(4):377–385. doi: 10.1111/j.1748-1716.1978.tb06294.x. [DOI] [PubMed] [Google Scholar]
  4. Andersson A. Tissue culture of isolated pancreatic islets. Acta Endocrinol Suppl (Copenh) 1976;205:283–294. [PubMed] [Google Scholar]
  5. Ashcroft S. J. Glucoreceptor mechanisms and the control of insulin release and biosynthesis. Diabetologia. 1980 Jan;18(1):5–15. doi: 10.1007/BF01228295. [DOI] [PubMed] [Google Scholar]
  6. Boden G., Chen X., Rosner J., Barton M. Effects of a 48-h fat infusion on insulin secretion and glucose utilization. Diabetes. 1995 Oct;44(10):1239–1242. doi: 10.2337/diab.44.10.1239. [DOI] [PubMed] [Google Scholar]
  7. Boden G. Role of fatty acids in the pathogenesis of insulin resistance and NIDDM. Diabetes. 1997 Jan;46(1):3–10. [PubMed] [Google Scholar]
  8. Crespin S. R., Greenough W. B., 3rd, Steinberg D. Stimulation of insulin secretion by infusion of free fatty acids. J Clin Invest. 1969 Oct;48(10):1934–1943. doi: 10.1172/JCI106160. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Docherty K., Clark A. R. Nutrient regulation of insulin gene expression. FASEB J. 1994 Jan;8(1):20–27. doi: 10.1096/fasebj.8.1.8299887. [DOI] [PubMed] [Google Scholar]
  10. Elks M. L. Chronic perifusion of rat islets with palmitate suppresses glucose-stimulated insulin release. Endocrinology. 1993 Jul;133(1):208–214. doi: 10.1210/endo.133.1.8319569. [DOI] [PubMed] [Google Scholar]
  11. FELBER J. P., VANNOTTI A. EFFECTS OF FAT INFUSION ON GLUCOSE TOLERANCE AND INSULIN PLASMA LEVELS. Med Exp Int J Exp Med. 1964;10:153–156. doi: 10.1159/000135410. [DOI] [PubMed] [Google Scholar]
  12. Goberna R., Tamarit J., Jr, Osorio J., Fussgänger R., Tamarit J., Pfeiffer E. F. Action of B-hydroxy butyrate, acetoacetate and palmitate on the insulin release in the perfused isolated rat pancreas. Horm Metab Res. 1974 Jul;6(4):256–260. doi: 10.1055/s-0028-1093862. [DOI] [PubMed] [Google Scholar]
  13. Groop L. C., Saloranta C., Shank M., Bonadonna R. C., Ferrannini E., DeFronzo R. A. The role of free fatty acid metabolism in the pathogenesis of insulin resistance in obesity and noninsulin-dependent diabetes mellitus. J Clin Endocrinol Metab. 1991 Jan;72(1):96–107. doi: 10.1210/jcem-72-1-96. [DOI] [PubMed] [Google Scholar]
  14. Harris M. I., Hadden W. C., Knowler W. C., Bennett P. H. Prevalence of diabetes and impaired glucose tolerance and plasma glucose levels in U.S. population aged 20-74 yr. Diabetes. 1987 Apr;36(4):523–534. doi: 10.2337/diab.36.4.523. [DOI] [PubMed] [Google Scholar]
  15. Hirose H., Lee Y. H., Inman L. R., Nagasawa Y., Johnson J. H., Unger R. H. Defective fatty acid-mediated beta-cell compensation in Zucker diabetic fatty rats. Pathogenic implications for obesity-dependent diabetes. J Biol Chem. 1996 Mar 8;271(10):5633–5637. doi: 10.1074/jbc.271.10.5633. [DOI] [PubMed] [Google Scholar]
  16. Horton E. S. NIDDM--the devastating disease. Diabetes Res Clin Pract. 1995 Aug;28 (Suppl):S3–11. doi: 10.1016/0168-8227(95)01087-t. [DOI] [PubMed] [Google Scholar]
  17. Itoh N., Okamoto H. Translational control of proinsulin synthesis by glucose. Nature. 1980 Jan 3;283(5742):100–102. doi: 10.1038/283100a0. [DOI] [PubMed] [Google Scholar]
  18. Leahy J. L., Bonner-Weir S., Weir G. C. Beta-cell dysfunction induced by chronic hyperglycemia. Current ideas on mechanism of impaired glucose-induced insulin secretion. Diabetes Care. 1992 Mar;15(3):442–455. doi: 10.2337/diacare.15.3.442. [DOI] [PubMed] [Google Scholar]
  19. Leahy J. L. Natural history of beta-cell dysfunction in NIDDM. Diabetes Care. 1990 Sep;13(9):992–1010. doi: 10.2337/diacare.13.9.992. [DOI] [PubMed] [Google Scholar]
  20. Lee Y., Hirose H., Ohneda M., Johnson J. H., McGarry J. D., Unger R. H. Beta-cell lipotoxicity in the pathogenesis of non-insulin-dependent diabetes mellitus of obese rats: impairment in adipocyte-beta-cell relationships. Proc Natl Acad Sci U S A. 1994 Nov 8;91(23):10878–10882. doi: 10.1073/pnas.91.23.10878. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Madison L. L., Seyffert W. A., Jr, Unger R. H., Barker B. Effect on plasma free fatty acids on plasma glucagon and serum insulin concentrations. Metabolism. 1968 Apr;17(4):301–304. doi: 10.1016/0026-0495(68)90097-8. [DOI] [PubMed] [Google Scholar]
  22. Malaisse W. J., Best L., Kawazu S., Malaisse-Lagae F., Sener A. The stimulus-secretion coupling of glucose-induced insulin release: fuel metabolism in islets deprived of exogenous nutrient. Arch Biochem Biophys. 1983 Jul 1;224(1):102–110. doi: 10.1016/0003-9861(83)90193-5. [DOI] [PubMed] [Google Scholar]
  23. McGarry J. D. Disordered metabolism in diabetes: have we underemphasized the fat component? J Cell Biochem. 1994;55 (Suppl):29–38. doi: 10.1002/jcb.240550005. [DOI] [PubMed] [Google Scholar]
  24. McGarry J. D. What if Minkowski had been ageusic? An alternative angle on diabetes. Science. 1992 Oct 30;258(5083):766–770. doi: 10.1126/science.1439783. [DOI] [PubMed] [Google Scholar]
  25. Milburn J. L., Jr, Hirose H., Lee Y. H., Nagasawa Y., Ogawa A., Ohneda M., BeltrandelRio H., Newgard C. B., Johnson J. H., Unger R. H. Pancreatic beta-cells in obesity. Evidence for induction of functional, morphologic, and metabolic abnormalities by increased long chain fatty acids. J Biol Chem. 1995 Jan 20;270(3):1295–1299. doi: 10.1074/jbc.270.3.1295. [DOI] [PubMed] [Google Scholar]
  26. Olsson S. E., Anderson A., Petersson B., Hellerström C. Effects of somatostatin on the biosynthesis and release of insulin from isolated pancreatic islets. Diabete Metab. 1976 Dec;2(4):199–202. [PubMed] [Google Scholar]
  27. Olszewski S., Deeney J. T., Schuppin G. T., Williams K. P., Corkey B. E., Rhodes C. J. Rab3A effector domain peptides induce insulin exocytosis via a specific interaction with a cytosolic protein doublet. J Biol Chem. 1994 Nov 11;269(45):27987–27991. [PubMed] [Google Scholar]
  28. Orci L. The insulin factory: a tour of the plant surroundings and a visit to the assembly line. The Minkowski lecture 1973 revisited. Diabetologia. 1985 Aug;28(8):528–546. doi: 10.1007/BF00281987. [DOI] [PubMed] [Google Scholar]
  29. Permutt M. A., Kakita K., Malinas P., Karl I., Bonner-Weir S., Weir G., Giddings S. J. An in vivo analysis of pancreatic protein and insulin biosynthesis in a rat model for non-insulin-dependent diabetes. J Clin Invest. 1984 May;73(5):1344–1350. doi: 10.1172/JCI111337. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Pipeleers D. G., Marichal M., Malaisse W. J. The stimulus-secretion coupling of glucose-induced insulin release. XIV. Glucose regulation of insular biosynthetic activity. Endocrinology. 1973 Nov;93(5):1001–1011. doi: 10.1210/endo-93-5-1001. [DOI] [PubMed] [Google Scholar]
  31. Prentki M., Corkey B. E. Are the beta-cell signaling molecules malonyl-CoA and cystolic long-chain acyl-CoA implicated in multiple tissue defects of obesity and NIDDM? Diabetes. 1996 Mar;45(3):273–283. doi: 10.2337/diab.45.3.273. [DOI] [PubMed] [Google Scholar]
  32. Prentki M., Vischer S., Glennon M. C., Regazzi R., Deeney J. T., Corkey B. E. Malonyl-CoA and long chain acyl-CoA esters as metabolic coupling factors in nutrient-induced insulin secretion. J Biol Chem. 1992 Mar 25;267(9):5802–5810. [PubMed] [Google Scholar]
  33. Reaven G. M., Hollenbeck C., Jeng C. Y., Wu M. S., Chen Y. D. Measurement of plasma glucose, free fatty acid, lactate, and insulin for 24 h in patients with NIDDM. Diabetes. 1988 Aug;37(8):1020–1024. doi: 10.2337/diab.37.8.1020. [DOI] [PubMed] [Google Scholar]
  34. Rhodes C. J., Alarcón C. What beta-cell defect could lead to hyperproinsulinemia in NIDDM? Some clues from recent advances made in understanding the proinsulin-processing mechanism. Diabetes. 1994 Apr;43(4):511–517. doi: 10.2337/diab.43.4.511. [DOI] [PubMed] [Google Scholar]
  35. Rhodes C. J., Halban P. A. Newly synthesized proinsulin/insulin and stored insulin are released from pancreatic B cells predominantly via a regulated, rather than a constitutive, pathway. J Cell Biol. 1987 Jul;105(1):145–153. doi: 10.1083/jcb.105.1.145. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Sako Y., Grill V. E. A 48-hour lipid infusion in the rat time-dependently inhibits glucose-induced insulin secretion and B cell oxidation through a process likely coupled to fatty acid oxidation. Endocrinology. 1990 Oct;127(4):1580–1589. doi: 10.1210/endo-127-4-1580. [DOI] [PubMed] [Google Scholar]
  37. Schuppin G. T., Rhodes C. J. Specific co-ordinated regulation of PC3 and PC2 gene expression with that of preproinsulin in insulin-producing beta TC3 cells. Biochem J. 1996 Jan 1;313(Pt 1):259–268. doi: 10.1042/bj3130259. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Skelly R. H., Schuppin G. T., Ishihara H., Oka Y., Rhodes C. J. Glucose-regulated translational control of proinsulin biosynthesis with that of the proinsulin endopeptidases PC2 and PC3 in the insulin-producing MIN6 cell line. Diabetes. 1996 Jan;45(1):37–43. doi: 10.2337/diab.45.1.37. [DOI] [PubMed] [Google Scholar]
  39. Stein D. T., Esser V., Stevenson B. E., Lane K. E., Whiteside J. H., Daniels M. B., Chen S., McGarry J. D. Essentiality of circulating fatty acids for glucose-stimulated insulin secretion in the fasted rat. J Clin Invest. 1996 Jun 15;97(12):2728–2735. doi: 10.1172/JCI118727. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Stein D. T., Stevenson B. E., Chester M. W., Basit M., Daniels M. B., Turley S. D., McGarry J. D. The insulinotropic potency of fatty acids is influenced profoundly by their chain length and degree of saturation. J Clin Invest. 1997 Jul 15;100(2):398–403. doi: 10.1172/JCI119546. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Unger R. H. Lipotoxicity in the pathogenesis of obesity-dependent NIDDM. Genetic and clinical implications. Diabetes. 1995 Aug;44(8):863–870. doi: 10.2337/diab.44.8.863. [DOI] [PubMed] [Google Scholar]
  42. Welsh M., Nielsen D. A., MacKrell A. J., Steiner D. F. Control of insulin gene expression in pancreatic beta-cells and in an insulin-producing cell line, RIN-5F cells. II. Regulation of insulin mRNA stability. J Biol Chem. 1985 Nov 5;260(25):13590–13594. [PubMed] [Google Scholar]
  43. Welsh M., Scherberg N., Gilmore R., Steiner D. F. Translational control of insulin biosynthesis. Evidence for regulation of elongation, initiation and signal-recognition-particle-mediated translational arrest by glucose. Biochem J. 1986 Apr 15;235(2):459–467. doi: 10.1042/bj2350459. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Welsh N., Hellerström C. In vitro restoration of insulin production in islets from adult rats treated neonatally with streptozotocin. Endocrinology. 1990 Apr;126(4):1842–1848. doi: 10.1210/endo-126-4-1842. [DOI] [PubMed] [Google Scholar]
  45. Zhou Y. P., Grill V. E. Long-term exposure of rat pancreatic islets to fatty acids inhibits glucose-induced insulin secretion and biosynthesis through a glucose fatty acid cycle. J Clin Invest. 1994 Feb;93(2):870–876. doi: 10.1172/JCI117042. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Zhou Y. P., Grill V. E. Palmitate-induced beta-cell insensitivity to glucose is coupled to decreased pyruvate dehydrogenase activity and enhanced kinase activity in rat pancreatic islets. Diabetes. 1995 Apr;44(4):394–399. doi: 10.2337/diab.44.4.394. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES