Skip to main content

Some NLM-NCBI services and products are experiencing heavy traffic, which may affect performance and availability. We apologize for the inconvenience and appreciate your patience. For assistance, please contact our Help Desk at info@ncbi.nlm.nih.gov.

The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1998 Mar 1;101(5):1102–1110. doi: 10.1172/JCI1692

Lack of cell surface Fas/APO-1 expression in pulmonary adenocarcinomas.

Y Nambu 1, S J Hughes 1, A Rehemtulla 1, D Hamstra 1, M B Orringer 1, D G Beer 1
PMCID: PMC508662  PMID: 9486981

Abstract

The Fas receptor and ligand initiate an apoptotic pathway. Alterations in this pathway within tumor cells can result in escape from apoptosis and immune surveillance. We evaluated Fas protein expression in 42 primary pulmonary adenocarcinomas, and Fas expression and function in the lung adenocarcinoma cell lines A549 and A427. Immunohistochemical analysis demonstrated Fas protein expression in 47.6% of the tumors; however, Fas-positive tumors demonstrated cytoplasmic staining without cell surface expression. Northern blot analysis indicated that levels of Fas mRNA were similar in Fas protein-positive tumors to levels in normal lung tissue, but were reduced in Fas protein-negative tumors. Soluble form Fas was not detected in the majority of these tumors either by RT-PCR or Western blot analysis. Cell surface Fas protein expression was minimal in A549 and A427 cell lines as determined by flow cytometry. Both cell lines demonstrated Fas mRNA expression by Northern blot analysis and abundant protein expression by Western blot analysis. Transfection of the Fas cDNA derived from A549 cells induced surface Fas protein in COS cells; however, stable transfection of a native Fas cDNA into A549 cells failed to induce surface Fas protein expression. Parental A549 cells and A549 cells transfected with a Fas expression vector were resistant to Fas-mediated apoptosis. Transgenic expression of a FLAG-tagged Fas cDNA in A549 cells, with visualization of the Fas-FLAG protein using confocal microscopy, demonstrated that the Fas-FLAG protein was retained within cytoplasmic portions of the cell and was not translocated to the cell surface. These findings suggest that the Fas protein is reduced or not present on the cell surface in the primary lung tumors and is sequestered within A549 tumorigenic lung cells, and these alterations directly affect the cells resistance to Fas-mediated apoptosis.

Full Text

The Full Text of this article is available as a PDF (564.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Buffone G. J., Darlington G. J. Isolation of DNA from biological specimens without extraction with phenol. Clin Chem. 1985 Jan;31(1):164–165. [PubMed] [Google Scholar]
  2. Cai Z., Stancou R., Körner M., Chouaib S. Impairment of Fas-antigen expression in adriamycin-resistant but not TNF-resistant MCF7 tumor cells. Int J Cancer. 1996 Nov 15;68(4):535–546. doi: 10.1002/(SICI)1097-0215(19961115)68:4<535::AID-IJC21>3.0.CO;2-2. [DOI] [PubMed] [Google Scholar]
  3. Cheng J., Zhou T., Liu C., Shapiro J. P., Brauer M. J., Kiefer M. C., Barr P. J., Mountz J. D. Protection from Fas-mediated apoptosis by a soluble form of the Fas molecule. Science. 1994 Mar 25;263(5154):1759–1762. doi: 10.1126/science.7510905. [DOI] [PubMed] [Google Scholar]
  4. Chinnaiyan A. M., O'Rourke K., Tewari M., Dixit V. M. FADD, a novel death domain-containing protein, interacts with the death domain of Fas and initiates apoptosis. Cell. 1995 May 19;81(4):505–512. doi: 10.1016/0092-8674(95)90071-3. [DOI] [PubMed] [Google Scholar]
  5. Darzynkiewicz Z., Bruno S., Del Bino G., Gorczyca W., Hotz M. A., Lassota P., Traganos F. Features of apoptotic cells measured by flow cytometry. Cytometry. 1992;13(8):795–808. doi: 10.1002/cyto.990130802. [DOI] [PubMed] [Google Scholar]
  6. Davies M. V., Kaufman R. J. Internal translation initiation in the design of improved expression vectors. Curr Opin Biotechnol. 1992 Oct;3(5):512–517. doi: 10.1016/0958-1669(92)90079-x. [DOI] [PubMed] [Google Scholar]
  7. Hanson L. A., Nuzum E. O., Jones B. C., Malkinson A. M., Beer D. G. Expression of the glucocorticoid receptor and K-ras genes in urethan-induced mouse lung tumors and transformed cell lines. Exp Lung Res. 1991 Mar-Apr;17(2):371–387. doi: 10.3109/01902149109064425. [DOI] [PubMed] [Google Scholar]
  8. Hockenbery D., Nuñez G., Milliman C., Schreiber R. D., Korsmeyer S. J. Bcl-2 is an inner mitochondrial membrane protein that blocks programmed cell death. Nature. 1990 Nov 22;348(6299):334–336. doi: 10.1038/348334a0. [DOI] [PubMed] [Google Scholar]
  9. Hughes S. J., Nambu Y., Soldes O. S., Hamstra D., Rehemtulla A., Iannettoni M. D., Orringer M. B., Beer D. G. Fas/APO-1 (CD95) is not translocated to the cell membrane in esophageal adenocarcinoma. Cancer Res. 1997 Dec 15;57(24):5571–5578. [PubMed] [Google Scholar]
  10. Itoh N., Yonehara S., Ishii A., Yonehara M., Mizushima S., Sameshima M., Hase A., Seto Y., Nagata S. The polypeptide encoded by the cDNA for human cell surface antigen Fas can mediate apoptosis. Cell. 1991 Jul 26;66(2):233–243. doi: 10.1016/0092-8674(91)90614-5. [DOI] [PubMed] [Google Scholar]
  11. Jättelä M., Benedict M., Tewari M., Shayman J. A., Dixit V. M. Bcl-x and Bcl-2 inhibit TNF and Fas-induced apoptosis and activation of phospholipase A2 in breast carcinoma cells. Oncogene. 1995 Jun 15;10(12):2297–2305. [PubMed] [Google Scholar]
  12. Kaufman R. J. Vectors used for expression in mammalian cells. Methods Enzymol. 1990;185:487–511. doi: 10.1016/0076-6879(90)85041-l. [DOI] [PubMed] [Google Scholar]
  13. Keane M. M., Ettenberg S. A., Lowrey G. A., Russell E. K., Lipkowitz S. Fas expression and function in normal and malignant breast cell lines. Cancer Res. 1996 Oct 15;56(20):4791–4798. [PubMed] [Google Scholar]
  14. Leithäuser F., Dhein J., Mechtersheimer G., Koretz K., Brüderlein S., Henne C., Schmidt A., Debatin K. M., Krammer P. H., Möller P. Constitutive and induced expression of APO-1, a new member of the nerve growth factor/tumor necrosis factor receptor superfamily, in normal and neoplastic cells. Lab Invest. 1993 Oct;69(4):415–429. [PubMed] [Google Scholar]
  15. Midis G. P., Shen Y., Owen-Schaub L. B. Elevated soluble Fas (sFas) levels in nonhematopoietic human malignancy. Cancer Res. 1996 Sep 1;56(17):3870–3874. [PubMed] [Google Scholar]
  16. Nagata S., Golstein P. The Fas death factor. Science. 1995 Mar 10;267(5203):1449–1456. doi: 10.1126/science.7533326. [DOI] [PubMed] [Google Scholar]
  17. Nicoletti I., Migliorati G., Pagliacci M. C., Grignani F., Riccardi C. A rapid and simple method for measuring thymocyte apoptosis by propidium iodide staining and flow cytometry. J Immunol Methods. 1991 Jun 3;139(2):271–279. doi: 10.1016/0022-1759(91)90198-o. [DOI] [PubMed] [Google Scholar]
  18. Niehans G. A., Brunner T., Frizelle S. P., Liston J. C., Salerno C. T., Knapp D. J., Green D. R., Kratzke R. A. Human lung carcinomas express Fas ligand. Cancer Res. 1997 Mar 15;57(6):1007–1012. [PubMed] [Google Scholar]
  19. Owen-Schaub L. B., Angelo L. S., Radinsky R., Ware C. F., Gesner T. G., Bartos D. P. Soluble Fas/APO-1 in tumor cells: a potential regulator of apoptosis? Cancer Lett. 1995 Jul 20;94(1):1–8. doi: 10.1016/0304-3835(95)03834-j. [DOI] [PubMed] [Google Scholar]
  20. Owen-Schaub L. B., Radinsky R., Kruzel E., Berry K., Yonehara S. Anti-Fas on nonhematopoietic tumors: levels of Fas/APO-1 and bcl-2 are not predictive of biological responsiveness. Cancer Res. 1994 Mar 15;54(6):1580–1586. [PubMed] [Google Scholar]
  21. Rehemtulla A., Kaufman R. J. Preferred sequence requirements for cleavage of pro-von Willebrand factor by propeptide-processing enzymes. Blood. 1992 May 1;79(9):2349–2355. [PubMed] [Google Scholar]
  22. Simoneaux D. K., Fletcher F. A., Jurecic R., Shilling H. G., Van N. T., Patel P., Belmont J. W. The receptor tyrosine kinase-related gene (ryk) demonstrates lineage and stage-specific expression in hematopoietic cells. J Immunol. 1995 Feb 1;154(3):1157–1166. [PubMed] [Google Scholar]
  23. Thompson C. B. Apoptosis in the pathogenesis and treatment of disease. Science. 1995 Mar 10;267(5203):1456–1462. doi: 10.1126/science.7878464. [DOI] [PubMed] [Google Scholar]
  24. Wada N., Matsumura M., Ohba Y., Kobayashi N., Takizawa T., Nakanishi Y. Transcription stimulation of the Fas-encoding gene by nuclear factor for interleukin-6 expression upon influenza virus infection. J Biol Chem. 1995 Jul 28;270(30):18007–18012. doi: 10.1074/jbc.270.30.18007. [DOI] [PubMed] [Google Scholar]
  25. Weller M., Frei K., Groscurth P., Krammer P. H., Yonekawa Y., Fontana A. Anti-Fas/APO-1 antibody-mediated apoptosis of cultured human glioma cells. Induction and modulation of sensitivity by cytokines. J Clin Invest. 1994 Sep;94(3):954–964. doi: 10.1172/JCI117462. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Weller M., Malipiero U., Rensing-Ehl A., Barr P. J., Fontana A. Fas/APO-1 gene transfer for human malignant glioma. Cancer Res. 1995 Jul 1;55(13):2936–2944. [PubMed] [Google Scholar]
  27. Wyllie A. H., Kerr J. F., Currie A. R. Cell death: the significance of apoptosis. Int Rev Cytol. 1980;68:251–306. doi: 10.1016/s0074-7696(08)62312-8. [DOI] [PubMed] [Google Scholar]
  28. Xerri L., Carbuccia N., Parc P., Birg F. Search for rearrangements and/or allelic loss of the fas/APO-1 gene in 101 human lymphomas. Am J Clin Pathol. 1995 Oct;104(4):424–430. doi: 10.1093/ajcp/104.4.424. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES