Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1998 Mar 1;101(5):1111–1120. doi: 10.1172/JCI119884

Impaired activation of phosphoinositide 3-kinase by insulin in fibroblasts from patients with severe insulin resistance and pseudoacromegaly. A disorder characterized by selective postreceptor insulin resistance.

K Dib 1, J P Whitehead 1, P J Humphreys 1, M A Soos 1, K C Baynes 1, S Kumar 1, T Harvey 1, S O'Rahilly 1
PMCID: PMC508663  PMID: 9486982

Abstract

Some patients with severe insulin resistance develop pathological tissue growth reminiscent of acromegaly. Previous studies of such patients have suggested the presence of a selective postreceptor defect of insulin signaling, resulting in the impairment of metabolic but preservation of mitogenic signaling. As the activation of phosphoinositide 3-kinase (PI 3-kinase) is considered essential for insulin's metabolic signaling, we have examined insulin-stimulated PI 3-kinase activity in anti-insulin receptor substrate (IRS)-1 immunoprecipitates from cultured dermal fibroblasts obtained from pseudoacromegalic (PA) patients and controls. At a concentration of insulin (1 nM) similar to that seen in vivo in PA patients, the activation of IRS-1-associated PI 3-kinase was reduced markedly in fibroblasts from the PA patients (32+/-7% of the activity of normal controls, P < 0.01). Genetic and biochemical studies indicated that this impairment was not secondary to a defect in the structure, expression, or activation of the insulin receptor, IRS-1, or p85alpha. Insulin stimulation of mitogenesis in PA fibroblasts, as determined by thymidine incorporation, was indistinguishable from controls, as was mitogen-activated protein kinase phosphorylation, confirming the integrity of insulin's mitogenic signaling pathways in this condition. These findings support the existence of an intrinsic defect of postreceptor insulin signaling in the PA subtype of insulin resistance, which involves impairment of the activation of PI 3-kinase. The PA tissue growth seen in such patients is likely to result from severe in vivo hyperinsulinemia activating intact mitogenic signaling pathways emanating from the insulin receptor.

Full Text

The Full Text of this article is available as a PDF (368.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Almind K., Bjørbaek C., Vestergaard H., Hansen T., Echwald S., Pedersen O. Aminoacid polymorphisms of insulin receptor substrate-1 in non-insulin-dependent diabetes mellitus. Lancet. 1993 Oct 2;342(8875):828–832. doi: 10.1016/0140-6736(93)92694-o. [DOI] [PubMed] [Google Scholar]
  2. Antonetti D. A., Algenstaedt P., Kahn C. R. Insulin receptor substrate 1 binds two novel splice variants of the regulatory subunit of phosphatidylinositol 3-kinase in muscle and brain. Mol Cell Biol. 1996 May;16(5):2195–2203. doi: 10.1128/mcb.16.5.2195. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bonnefoy-Bérard N., Liu Y. C., von Willebrand M., Sung A., Elly C., Mustelin T., Yoshida H., Ishizaka K., Altman A. Inhibition of phosphatidylinositol 3-kinase activity by association with 14-3-3 proteins in T cells. Proc Natl Acad Sci U S A. 1995 Oct 24;92(22):10142–10146. doi: 10.1073/pnas.92.22.10142. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Cheatham B., Vlahos C. J., Cheatham L., Wang L., Blenis J., Kahn C. R. Phosphatidylinositol 3-kinase activation is required for insulin stimulation of pp70 S6 kinase, DNA synthesis, and glucose transporter translocation. Mol Cell Biol. 1994 Jul;14(7):4902–4911. doi: 10.1128/mcb.14.7.4902. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Clarke J. F., Young P. W., Yonezawa K., Kasuga M., Holman G. D. Inhibition of the translocation of GLUT1 and GLUT4 in 3T3-L1 cells by the phosphatidylinositol 3-kinase inhibitor, wortmannin. Biochem J. 1994 Jun 15;300(Pt 3):631–635. doi: 10.1042/bj3000631. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Dhand R., Hiles I., Panayotou G., Roche S., Fry M. J., Gout I., Totty N. F., Truong O., Vicendo P., Yonezawa K. PI 3-kinase is a dual specificity enzyme: autoregulation by an intrinsic protein-serine kinase activity. EMBO J. 1994 Feb 1;13(3):522–533. doi: 10.1002/j.1460-2075.1994.tb06290.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Flier J. S., Moller D. E., Moses A. C., O'Rahilly S., Chaiken R. L., Grigorescu F., Elahi D., Kahn B. B., Weinreb J. E., Eastman R. Insulin-mediated pseudoacromegaly: clinical and biochemical characterization of a syndrome of selective insulin resistance. J Clin Endocrinol Metab. 1993 Jun;76(6):1533–1541. doi: 10.1210/jcem.76.6.8388881. [DOI] [PubMed] [Google Scholar]
  8. Fradkin J. E., Eastman R. C., Lesniak M. A., Roth J. Specificity spillover at the hormone receptor--exploring its role in human disease. N Engl J Med. 1989 Mar 9;320(10):640–645. doi: 10.1056/NEJM198903093201005. [DOI] [PubMed] [Google Scholar]
  9. Giorgetti S., Ballotti R., Kowalski-Chauvel A., Tartare S., Van Obberghen E. The insulin and insulin-like growth factor-I receptor substrate IRS-1 associates with and activates phosphatidylinositol 3-kinase in vitro. J Biol Chem. 1993 Apr 5;268(10):7358–7364. [PubMed] [Google Scholar]
  10. Gout I., Dhand R., Panayotou G., Fry M. J., Hiles I., Otsu M., Waterfield M. D. Expression and characterization of the p85 subunit of the phosphatidylinositol 3-kinase complex and a related p85 beta protein by using the baculovirus expression system. Biochem J. 1992 Dec 1;288(Pt 2):395–405. doi: 10.1042/bj2880395. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hara K., Yonezawa K., Sakaue H., Ando A., Kotani K., Kitamura T., Kitamura Y., Ueda H., Stephens L., Jackson T. R. 1-Phosphatidylinositol 3-kinase activity is required for insulin-stimulated glucose transport but not for RAS activation in CHO cells. Proc Natl Acad Sci U S A. 1994 Aug 2;91(16):7415–7419. doi: 10.1073/pnas.91.16.7415. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hiles I. D., Otsu M., Volinia S., Fry M. J., Gout I., Dhand R., Panayotou G., Ruiz-Larrea F., Thompson A., Totty N. F. Phosphatidylinositol 3-kinase: structure and expression of the 110 kd catalytic subunit. Cell. 1992 Aug 7;70(3):419–429. doi: 10.1016/0092-8674(92)90166-a. [DOI] [PubMed] [Google Scholar]
  13. Jackson T. R., Stephens L. R., Hawkins P. T. Receptor specificity of growth factor-stimulated synthesis of 3-phosphorylated inositol lipids in Swiss 3T3 cells. J Biol Chem. 1992 Aug 15;267(23):16627–16636. [PubMed] [Google Scholar]
  14. Jhun B. H., Rose D. W., Seely B. L., Rameh L., Cantley L., Saltiel A. R., Olefsky J. M. Microinjection of the SH2 domain of the 85-kilodalton subunit of phosphatidylinositol 3-kinase inhibits insulin-induced DNA synthesis and c-fos expression. Mol Cell Biol. 1994 Nov;14(11):7466–7475. doi: 10.1128/mcb.14.11.7466. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Kelly K. L., Ruderman N. B. Insulin-stimulated phosphatidylinositol 3-kinase. Association with a 185-kDa tyrosine-phosphorylated protein (IRS-1) and localization in a low density membrane vesicle. J Biol Chem. 1993 Feb 25;268(6):4391–4398. [PubMed] [Google Scholar]
  16. Krook A., Kumar S., Laing I., Boulton A. J., Wass J. A., O'Rahilly S. Molecular scanning of the insulin receptor gene in syndromes of insulin resistance. Diabetes. 1994 Mar;43(3):357–368. doi: 10.2337/diab.43.3.357. [DOI] [PubMed] [Google Scholar]
  17. Lawrence J. C., Jr, Roach P. J. New insights into the role and mechanism of glycogen synthase activation by insulin. Diabetes. 1997 Apr;46(4):541–547. doi: 10.2337/diab.46.4.541. [DOI] [PubMed] [Google Scholar]
  18. Maassen J. A., Van der Vorm E. R., Van der Zon G. C., Klinkhamer M. P., Krans H. M., Möller W. A leucine to proline mutation at position 233 in the insulin receptor inhibits cleavage of the proreceptor and transport to the cell surface. Biochemistry. 1991 Nov 5;30(44):10778–10783. doi: 10.1021/bi00108a024. [DOI] [PubMed] [Google Scholar]
  19. Moller D. E., Cohen O., Yamaguchi Y., Assiz R., Grigorescu F., Eberle A., Morrow L. A., Moses A. C., Flier J. S. Prevalence of mutations in the insulin receptor gene in subjects with features of the type A syndrome of insulin resistance. Diabetes. 1994 Feb;43(2):247–255. doi: 10.2337/diab.43.2.247. [DOI] [PubMed] [Google Scholar]
  20. Moller D. E., Flier J. S. Detection of an alteration in the insulin-receptor gene in a patient with insulin resistance, acanthosis nigricans, and the polycystic ovary syndrome (type A insulin resistance). N Engl J Med. 1988 Dec 8;319(23):1526–1529. doi: 10.1056/NEJM198812083192306. [DOI] [PubMed] [Google Scholar]
  21. Moller D. E., Yokota A., White M. F., Pazianos A. G., Flier J. S. A naturally occurring mutation of insulin receptor alanine 1134 impairs tyrosine kinase function and is associated with dominantly inherited insulin resistance. J Biol Chem. 1990 Sep 5;265(25):14979–14985. [PubMed] [Google Scholar]
  22. Myers M. G., Jr, Backer J. M., Sun X. J., Shoelson S., Hu P., Schlessinger J., Yoakim M., Schaffhausen B., White M. F. IRS-1 activates phosphatidylinositol 3'-kinase by associating with src homology 2 domains of p85. Proc Natl Acad Sci U S A. 1992 Nov 1;89(21):10350–10354. doi: 10.1073/pnas.89.21.10350. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Myers M. G., Jr, Zhang Y., Aldaz G. A., Grammer T., Glasheen E. M., Yenush L., Wang L. M., Sun X. J., Blenis J., Pierce J. H. YMXM motifs and signaling by an insulin receptor substrate 1 molecule without tyrosine phosphorylation sites. Mol Cell Biol. 1996 Aug;16(8):4147–4155. doi: 10.1128/mcb.16.8.4147. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Schaffner W., Weissmann C. A rapid, sensitive, and specific method for the determination of protein in dilute solution. Anal Biochem. 1973 Dec;56(2):502–514. doi: 10.1016/0003-2697(73)90217-0. [DOI] [PubMed] [Google Scholar]
  25. Shepherd P. R., Navé B. T., Siddle K. Insulin stimulation of glycogen synthesis and glycogen synthase activity is blocked by wortmannin and rapamycin in 3T3-L1 adipocytes: evidence for the involvement of phosphoinositide 3-kinase and p70 ribosomal protein-S6 kinase. Biochem J. 1995 Jan 1;305(Pt 1):25–28. doi: 10.1042/bj3050025. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Sun X. J., Crimmins D. L., Myers M. G., Jr, Miralpeix M., White M. F. Pleiotropic insulin signals are engaged by multisite phosphorylation of IRS-1. Mol Cell Biol. 1993 Dec;13(12):7418–7428. doi: 10.1128/mcb.13.12.7418. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Tanti J. F., Grémeaux T., Grillo S., Calleja V., Klippel A., Williams L. T., Van Obberghen E., Le Marchand-Brustel Y. Overexpression of a constitutively active form of phosphatidylinositol 3-kinase is sufficient to promote Glut 4 translocation in adipocytes. J Biol Chem. 1996 Oct 11;271(41):25227–25232. doi: 10.1074/jbc.271.41.25227. [DOI] [PubMed] [Google Scholar]
  28. Taylor S. I., Cama A., Accili D., Barbetti F., Quon M. J., de la Luz Sierra M., Suzuki Y., Koller E., Levy-Toledano R., Wertheimer E. Mutations in the insulin receptor gene. Endocr Rev. 1992 Aug;13(3):566–595. doi: 10.1210/edrv-13-3-566. [DOI] [PubMed] [Google Scholar]
  29. Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Wertheimer E., Lu S. P., Backeljauw P. F., Davenport M. L., Taylor S. I. Homozygous deletion of the human insulin receptor gene results in leprechaunism. Nat Genet. 1993 Sep;5(1):71–73. doi: 10.1038/ng0993-71. [DOI] [PubMed] [Google Scholar]
  31. White M. F., Kahn C. R. The insulin signaling system. J Biol Chem. 1994 Jan 7;269(1):1–4. [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES