Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1998 Mar 1;101(5):1121–1132. doi: 10.1172/JCI1009

beta-Hydroxybutyrate fuels synaptic function during development. Histological and physiological evidence in rat hippocampal slices.

Y Izumi 1, K Ishii 1, H Katsuki 1, A M Benz 1, C F Zorumski 1
PMCID: PMC508664  PMID: 9486983

Abstract

To determine whether ketone bodies sustain neuronal function as energy substrates, we examined the effects of beta-hydroxybutyrate (betaHB) on synaptic transmission and morphological integrity during glucose deprivation in rat hippocampal slices. After the depression of excitatory postsynaptic potentials (EPSPs) by 60 min of glucose deprivation, administration of 0.5-10 mM D-betaHB restored EPSPs in slices from postnatal day (PND) 15 rats but not in slices from PND 30 or 120 rats. At PND 15, adding D-betaHB to the media allowed robust long-term potentiation of EPSPs triggered by high frequency stimulation, and prevented the EPSP-spike facilitation that suggests hyperexcitability of neurons. Even after PND 15,D-betaHB blocked morphological changes produced by either glucose deprivation or glycolytic inhibition. These results indicate that D-betaHB is not only able to substitute for glucose as an energy substrate but is also able to preserve neuronal integrity and stability, particularly during early development.

Full Text

The Full Text of this article is available as a PDF (609.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andersen P., Sundberg S. H., Sveen O., Swann J. W., Wigström H. Possible mechanisms for long-lasting potentiation of synaptic transmission in hippocampal slices from guinea-pigs. J Physiol. 1980 May;302:463–482. doi: 10.1113/jphysiol.1980.sp013256. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Arakawa T., Goto T., Okada Y. Effect of ketone body (D-3-hydroxybutyrate) on neural activity and energy metabolism in hippocampal slices of the adult guinea pig. Neurosci Lett. 1991 Sep 2;130(1):53–56. doi: 10.1016/0304-3940(91)90225-i. [DOI] [PubMed] [Google Scholar]
  3. Booth R. F., Patel T. B., Clark J. B. The development of enzymes of energy metabolism in the brain of a precocial (guinea pig) and non-precocial (rat) species. J Neurochem. 1980 Jan;34(1):17–25. doi: 10.1111/j.1471-4159.1980.tb04616.x. [DOI] [PubMed] [Google Scholar]
  4. Cremer J. E., Cunningham V. J., Pardridge W. M., Braun L. D., Oldendorf W. H. Kinetics of blood-brain barrier transport of pyruvate, lactate and glucose in suckling, weanling and adult rats. J Neurochem. 1979 Aug;33(2):439–445. doi: 10.1111/j.1471-4159.1979.tb05173.x. [DOI] [PubMed] [Google Scholar]
  5. Cremer J. E., Heath D. F. The estimation of rates of utilization of glucose and ketone bodies in the brain of the suckling rat using compartmental analysis of isotopic data. Biochem J. 1974 Sep;142(3):527–544. doi: 10.1042/bj1420527. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Cremer J. E. Substrate utilization and brain development. J Cereb Blood Flow Metab. 1982 Dec;2(4):394–407. doi: 10.1038/jcbfm.1982.45. [DOI] [PubMed] [Google Scholar]
  7. Douglas R. M., Goddard G. V. Long-term potentiation of the perforant path-granule cell synapse in the rat hippocampus. Brain Res. 1975 Mar 21;86(2):205–215. doi: 10.1016/0006-8993(75)90697-6. [DOI] [PubMed] [Google Scholar]
  8. Garcia C. K., Brown M. S., Pathak R. K., Goldstein J. L. cDNA cloning of MCT2, a second monocarboxylate transporter expressed in different cells than MCT1. J Biol Chem. 1995 Jan 27;270(4):1843–1849. doi: 10.1074/jbc.270.4.1843. [DOI] [PubMed] [Google Scholar]
  9. Gasch A. T. Use of the traditional ketogenic diet for treatment of intractable epilepsy. J Am Diet Assoc. 1990 Oct;90(10):1433–1434. [PubMed] [Google Scholar]
  10. Gibson G. E., Blass J. P. Proportional inhibition of acetylcholine synthesis accompanying impairment of 3-hydroxybutyrate oxidation in rat brain slices. Biochem Pharmacol. 1979;28(1):133–139. doi: 10.1016/0006-2952(79)90281-8. [DOI] [PubMed] [Google Scholar]
  11. Girard J. R., Cuendet G. S., Marliss E. B., Kervran A., Rieutort M., Assan R. Fuels, hormones, and liver metabolism at term and during the early postnatal period in the rat. J Clin Invest. 1973 Dec;52(12):3190–3200. doi: 10.1172/JCI107519. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Harris K. M., Teyler T. J. Developmental onset of long-term potentiation in area CA1 of the rat hippocampus. J Physiol. 1984 Jan;346:27–48. doi: 10.1113/jphysiol.1984.sp015005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hawkins R. A., Williamson D. H., Krebs H. A. Ketone-body utilization by adult and suckling rat brain in vivo. Biochem J. 1971 Mar;122(1):13–18. doi: 10.1042/bj1220013. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Huttenlocher P. R. Ketonemia and seizures: metabolic and anticonvulsant effects of two ketogenic diets in childhood epilepsy. Pediatr Res. 1976 May;10(5):536–540. doi: 10.1203/00006450-197605000-00006. [DOI] [PubMed] [Google Scholar]
  15. Ide T., Steinke J., Cahill G. F., Jr Metabolic interactions of glucose, lactate, and beta-hydroxybutyrate in rat brain slices. Am J Physiol. 1969 Sep;217(3):784–792. doi: 10.1152/ajplegacy.1969.217.3.784. [DOI] [PubMed] [Google Scholar]
  16. Ito T., Quastel J. H. Acetoacetate metabolism in infant and adult rat brain in vitro. Biochem J. 1970 Feb;116(4):641–655. doi: 10.1042/bj1160641. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Izumi Y., Benz A. M., Clifford D. B., Zorumski C. F. Nitric oxide inhibitors attenuate N-methyl-D-aspartate excitotoxicity in rat hippocampal slices. Neurosci Lett. 1992 Feb 3;135(2):227–230. doi: 10.1016/0304-3940(92)90442-a. [DOI] [PubMed] [Google Scholar]
  18. Izumi Y., Benz A. M., Clifford D. B., Zorumski C. F. Nitric oxide inhibitors attenuate ischemic degeneration in the CA1 region of rat hippocampal slices. Neurosci Lett. 1996 Jun 7;210(3):157–160. doi: 10.1016/0304-3940(96)12669-0. [DOI] [PubMed] [Google Scholar]
  19. Izumi Y., Benz A. M., Zorumski C. F., Olney J. W. Effects of lactate and pyruvate on glucose deprivation in rat hippocampal slices. Neuroreport. 1994 Jan 31;5(5):617–620. doi: 10.1097/00001756-199401000-00021. [DOI] [PubMed] [Google Scholar]
  20. Izumi Y., Zorumski C. F. Developmental changes in long-term potentiation in CA1 of rat hippocampal slices. Synapse. 1995 May;20(1):19–23. doi: 10.1002/syn.890200104. [DOI] [PubMed] [Google Scholar]
  21. Izumi Y., Zorumski C. F. Involvement of nitric oxide in low glucose-mediated inhibition of hippocampal long-term potentiation. Synapse. 1997 Mar;25(3):258–262. doi: 10.1002/(SICI)1098-2396(199703)25:3<258::AID-SYN4>3.0.CO;2-A. [DOI] [PubMed] [Google Scholar]
  22. Kraus H., Schlenker S., Schwedesky D. Developmental changes of cerebral ketone body utilization in human infants. Hoppe Seylers Z Physiol Chem. 1974 Feb;355(2):164–170. doi: 10.1515/bchm2.1974.355.1.164. [DOI] [PubMed] [Google Scholar]
  23. Levitsky L. L., Fisher D. E., Paton J. B., Delannoy C. W. Fasting plasma levels of glucose, acetoacetate, D-beta-hydroxybutyrate, glycerol, and lactate in the baboon infant: correlation with cerebral uptake of substrates and oxygen. Pediatr Res. 1977 Apr;11(4):298–302. doi: 10.1203/00006450-197704000-00008. [DOI] [PubMed] [Google Scholar]
  24. Lundy E. F., Luyckx B. A., Combs D. J., Zelenock G. B., D'Alecy L. G. Butanediol induced cerebral protection from ischemic-hypoxia in the instrumented Levine rat. Stroke. 1984 May-Jun;15(3):547–552. doi: 10.1161/01.str.15.3.547. [DOI] [PubMed] [Google Scholar]
  25. Mantych G. J., James D. E., Chung H. D., Devaskar S. U. Cellular localization and characterization of Glut 3 glucose transporter isoform in human brain. Endocrinology. 1992 Sep;131(3):1270–1278. doi: 10.1210/endo.131.3.1505464. [DOI] [PubMed] [Google Scholar]
  26. Marie C., Bralet A. M., Bralet J. Protective action of 1,3-butanediol in cerebral ischemia. A neurologic, histologic, and metabolic study. J Cereb Blood Flow Metab. 1987 Dec;7(6):794–800. doi: 10.1038/jcbfm.1987.136. [DOI] [PubMed] [Google Scholar]
  27. McKenna M. C., Tildon J. T., Stevenson J. H., Hopkins I. B. Energy metabolism in cortical synaptic terminals from weanling and mature rat brain: evidence for multiple compartments of tricarboxylic acid cycle activity. Dev Neurosci. 1994;16(5-6):291–300. doi: 10.1159/000112122. [DOI] [PubMed] [Google Scholar]
  28. Middleton B. The acetoacetyl-coenzyme A thiolases of rat brain and their relative activities during postnatal development. Biochem J. 1973 Apr;132(4):731–737. doi: 10.1042/bj1320731. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Mitchell G. A., Kassovska-Bratinova S., Boukaftane Y., Robert M. F., Wang S. P., Ashmarina L., Lambert M., Lapierre P., Potier E. Medical aspects of ketone body metabolism. Clin Invest Med. 1995 Jun;18(3):193–216. [PubMed] [Google Scholar]
  30. Moore T. J., Lione A. P., Sugden M. C., Regen D. M. Beta-hydroxybutyrate transport in rat brain: developmental and dietary modulations. Am J Physiol. 1976 Mar;230(3):619–630. doi: 10.1152/ajplegacy.1976.230.3.619. [DOI] [PubMed] [Google Scholar]
  31. Nakazawa M., Kodama S., Matsuo T. Effects of ketogenic diet on electroconvulsive threshold and brain contents of adenosine nucleotides. Brain Dev. 1983;5(4):375–380. doi: 10.1016/s0387-7604(83)80042-4. [DOI] [PubMed] [Google Scholar]
  32. Nehlig A., Pereira de Vasconcelos A. Glucose and ketone body utilization by the brain of neonatal rats. Prog Neurobiol. 1993 Feb;40(2):163–221. doi: 10.1016/0301-0082(93)90022-k. [DOI] [PubMed] [Google Scholar]
  33. Pereira de Vasconcelos A., Nehlig A. Effects of early chronic phenobarbital treatment on the maturation of energy metabolism in the developing rat brain. I. Incorporation of glucose carbon into amino acids. Brain Res. 1987 Dec 1;433(2):219–229. doi: 10.1016/0165-3806(87)90025-3. [DOI] [PubMed] [Google Scholar]
  34. Robinson A. M., Williamson D. H. Physiological roles of ketone bodies as substrates and signals in mammalian tissues. Physiol Rev. 1980 Jan;60(1):143–187. doi: 10.1152/physrev.1980.60.1.143. [DOI] [PubMed] [Google Scholar]
  35. Roeder L. M., Tildon J. T., Stevenson J. H., Jr Competition among oxidizable substrates in brains of young and adult rats. Whole homogenates. Biochem J. 1984 Apr 1;219(1):125–130. doi: 10.1042/bj2190125. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Schurr A., West C. A., Rigor B. M. Lactate-supported synaptic function in the rat hippocampal slice preparation. Science. 1988 Jun 3;240(4857):1326–1328. doi: 10.1126/science.3375817. [DOI] [PubMed] [Google Scholar]
  37. Sims N. R., Heward S. L. Delayed treatment with 1,3-butanediol reduces loss of CA1 neurons in the hippocampus of rats following brief forebrain ischemia. Brain Res. 1994 Oct 31;662(1-2):216–222. doi: 10.1016/0006-8993(94)90815-x. [DOI] [PubMed] [Google Scholar]
  38. Teijema H. L., van Gelderen H. H., Giesberts M. A. Hypoketosis as a cause of symptoms in childhood hypoglycemia. Eur J Pediatr. 1980 Jun;134(1):51–55. doi: 10.1007/BF00442403. [DOI] [PubMed] [Google Scholar]
  39. Thurston J. H., Hauhart R. E., Schiro J. A. Beta-hydroxybutyrate reverses insulin-induced hypoglycemic coma in suckling-weanling mice despite low blood and brain glucose levels. Metab Brain Dis. 1986 Mar;1(1):63–82. doi: 10.1007/BF00998478. [DOI] [PubMed] [Google Scholar]
  40. Tildon J. T., Roeder L. M. Transport of 3-hydroxy[3-14C]butyrate by dissociated cells from rat brain. Am J Physiol. 1988 Aug;255(2 Pt 1):C133–C139. doi: 10.1152/ajpcell.1988.255.2.C133. [DOI] [PubMed] [Google Scholar]
  41. Trauner D. A. Medium-chain triglyceride (MCT) diet in intractable seizure disorders. Neurology. 1985 Feb;35(2):237–238. doi: 10.1212/wnl.35.2.237. [DOI] [PubMed] [Google Scholar]
  42. Vannucci S. J. Developmental expression of GLUT1 and GLUT3 glucose transporters in rat brain. J Neurochem. 1994 Jan;62(1):240–246. doi: 10.1046/j.1471-4159.1994.62010240.x. [DOI] [PubMed] [Google Scholar]
  43. Vannucci S. J., Willing L. B., Vannucci R. C. Developmental expression of glucose transporters, GLUT1 and GLUT3, in postnatal rat brain. Adv Exp Med Biol. 1993;331:3–7. doi: 10.1007/978-1-4615-2920-0_1. [DOI] [PubMed] [Google Scholar]
  44. Veneman T., Mitrakou A., Mokan M., Cryer P., Gerich J. Effect of hyperketonemia and hyperlacticacidemia on symptoms, cognitive dysfunction, and counterregulatory hormone responses during hypoglycemia in normal humans. Diabetes. 1994 Nov;43(11):1311–1317. doi: 10.2337/diab.43.11.1311. [DOI] [PubMed] [Google Scholar]
  45. Wiener R., Hirsch H. J., Spitzer J. J. Cerebral extraction of ketones and their penetration into CSF in the dog. Am J Physiol. 1971 May;220(5):1542–1546. doi: 10.1152/ajplegacy.1971.220.5.1542. [DOI] [PubMed] [Google Scholar]
  46. Wijburg F. A., Barth P. G., Bindoff L. A., Birch-Machin M. A., van der Blij J. F., Ruitenbeek W., Turnbull D. M., Schutgens R. B. Leigh syndrome associated with a deficiency of the pyruvate dehydrogenase complex: results of treatment with a ketogenic diet. Neuropediatrics. 1992 Jun;23(3):147–152. doi: 10.1055/s-2008-1071331. [DOI] [PubMed] [Google Scholar]
  47. Withrow C. D. The ketogenic diet: mechanism of anticonvulsant action. Adv Neurol. 1980;27:635–642. [PubMed] [Google Scholar]
  48. Zammarchi E., Filippi L., Fonda C., Benedetti P. A., Pistone D., Donati M. A. Different neurologic outcomes in two patients with neonatal hyperinsulinemic hypoglycemia. Childs Nerv Syst. 1996 Jul;12(7):413–416. doi: 10.1007/BF00395098. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES