Abstract
Methylglyoxal (MG), a dicarbonyl compound produced by the fragmentation of triose phosphates, forms advanced glycation endproducts (AGEs) in vitro. Glyoxalase-I catalyzes the conversion of MG to S-D-lactoylglutathione, which in turn is converted to D-lactate by glyoxalase-II. To evaluate directly the effect of glyoxalase-I activity on intracellular AGE formation, GM7373 endothelial cells that stably express human glyoxalase-I were generated. Glyoxalase-I activity in these cells was increased 28-fold compared to neo-transfected control cells (21.80+/-0.1 vs. 0. 76+/-0.02 micromol/min/mg protein, n = 3, P < 0.001). In neo-transfected cells, 30 mM glucose incubation increased MG and D-lactate concentration approximately twofold above 5 MM (35.5+/-5.8 vs. 19.6+/-1.6, P < 0.02, n = 3, and 21.0+/-1.3 vs. 10.0+/-1.2 pmol/ 10(6) cells, n = 3, P < 0.001, respectively). In contrast, in glyoxalase-I-transfected cells, 30 mM glucose incubation did not increase MG concentration at all, while increasing the enzymatic product D-lactate by > 10-fold (18.9+/-3.2 vs. 18.4+/- 5.8, n = 3, P = NS, and 107.1+/-9.0 vs. 9.4+/-0 pmol/10(6) cells, n = 3, P < 0.001, respectively). After exposure to 30 mM glucose, intracellular AGE formation in neo cells was increased 13.6-fold (2.58+/-0.15 vs. 0.19+/-0.03 total absorbance units, n = 3, P < 0.001). Concomitant with increased intracellular AGEs, macromolecular endocytosis by these cells was increased 2.2-fold. Overexpression of glyoxalase-I completely prevented both hyperglycemia-induced AGE formation and increased macromolecular endocytosis.
Full Text
The Full Text of this article is available as a PDF (190.8 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ahmed M. U., Brinkmann Frye E., Degenhardt T. P., Thorpe S. R., Baynes J. W. N-epsilon-(carboxyethyl)lysine, a product of the chemical modification of proteins by methylglyoxal, increases with age in human lens proteins. Biochem J. 1997 Jun 1;324(Pt 2):565–570. doi: 10.1042/bj3240565. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Aronsson A. C., Sellin S., Tibbelin G., Mannervik B. Probing the active site of glyoxalase I from human erythrocytes by use of the strong reversible inhibitor S-p-bromobenzylglutathione and metal substitutions. Biochem J. 1981 Jul 1;197(1):67–75. doi: 10.1042/bj1970067. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bergold P. J., Casaccia-Bonnefil P., Zeng X. L., Federoff H. J. Transsynaptic neuronal loss induced in hippocampal slice cultures by a herpes simplex virus vector expressing the GluR6 subunit of the kainate receptor. Proc Natl Acad Sci U S A. 1993 Jul 1;90(13):6165–6169. doi: 10.1073/pnas.90.13.6165. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bischoff J., Lodish H. F. Two asialoglycoprotein receptor polypeptides in human hepatoma cells. J Biol Chem. 1987 Aug 25;262(24):11825–11832. [PubMed] [Google Scholar]
- Brownlee M. Advanced protein glycosylation in diabetes and aging. Annu Rev Med. 1995;46:223–234. doi: 10.1146/annurev.med.46.1.223. [DOI] [PubMed] [Google Scholar]
- Casazza J. P., Fu J. L. Measurement of acetol in serum. Anal Biochem. 1985 Aug 1;148(2):344–348. doi: 10.1016/0003-2697(85)90238-6. [DOI] [PubMed] [Google Scholar]
- Chaplen F. W., Fahl W. E., Cameron D. C. Method for determination of free intracellular and extracellular methylglyoxal in animal cells grown in culture. Anal Biochem. 1996 Jul 1;238(2):171–178. doi: 10.1006/abio.1996.0271. [DOI] [PubMed] [Google Scholar]
- Federoff H. J., Geschwind M. D., Geller A. I., Kessler J. A. Expression of nerve growth factor in vivo from a defective herpes simplex virus 1 vector prevents effects of axotomy on sympathetic ganglia. Proc Natl Acad Sci U S A. 1992 Mar 1;89(5):1636–1640. doi: 10.1073/pnas.89.5.1636. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Felgner P. L., Gadek T. R., Holm M., Roman R., Chan H. W., Wenz M., Northrop J. P., Ringold G. M., Danielsen M. Lipofection: a highly efficient, lipid-mediated DNA-transfection procedure. Proc Natl Acad Sci U S A. 1987 Nov;84(21):7413–7417. doi: 10.1073/pnas.84.21.7413. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fu M. X., Requena J. R., Jenkins A. J., Lyons T. J., Baynes J. W., Thorpe S. R. The advanced glycation end product, Nepsilon-(carboxymethyl)lysine, is a product of both lipid peroxidation and glycoxidation reactions. J Biol Chem. 1996 Apr 26;271(17):9982–9986. doi: 10.1074/jbc.271.17.9982. [DOI] [PubMed] [Google Scholar]
- Gardiner T. A., Stitt A. W., Archer D. B. Retinal vascular endothelial cell endocytosis increases in early diabetes. Lab Invest. 1995 Apr;72(4):439–444. [PubMed] [Google Scholar]
- Geller A. I., Freese A. Infection of cultured central nervous system neurons with a defective herpes simplex virus 1 vector results in stable expression of Escherichia coli beta-galactosidase. Proc Natl Acad Sci U S A. 1990 Feb;87(3):1149–1153. doi: 10.1073/pnas.87.3.1149. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Giardino I., Edelstein D., Brownlee M. BCL-2 expression or antioxidants prevent hyperglycemia-induced formation of intracellular advanced glycation endproducts in bovine endothelial cells. J Clin Invest. 1996 Mar 15;97(6):1422–1428. doi: 10.1172/JCI118563. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Giardino I., Edelstein D., Brownlee M. Nonenzymatic glycosylation in vitro and in bovine endothelial cells alters basic fibroblast growth factor activity. A model for intracellular glycosylation in diabetes. J Clin Invest. 1994 Jul;94(1):110–117. doi: 10.1172/JCI117296. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Graier W. F., Simecek S., Kukovetz W. R., Kostner G. M. High D-glucose-induced changes in endothelial Ca2+/EDRF signaling are due to generation of superoxide anions. Diabetes. 1996 Oct;45(10):1386–1395. doi: 10.2337/diab.45.10.1386. [DOI] [PubMed] [Google Scholar]
- Greene D. A., Lattimer S. A., Sima A. A. Sorbitol, phosphoinositides, and sodium-potassium-ATPase in the pathogenesis of diabetic complications. N Engl J Med. 1987 Mar 5;316(10):599–606. doi: 10.1056/NEJM198703053161007. [DOI] [PubMed] [Google Scholar]
- Ikeda K., Higashi T., Sano H., Jinnouchi Y., Yoshida M., Araki T., Ueda S., Horiuchi S. N (epsilon)-(carboxymethyl)lysine protein adduct is a major immunological epitope in proteins modified with advanced glycation end products of the Maillard reaction. Biochemistry. 1996 Jun 18;35(24):8075–8083. doi: 10.1021/bi9530550. [DOI] [PubMed] [Google Scholar]
- Jensen-Urstad K. J., Reichard P. G., Rosfors J. S., Lindblad L. E., Jensen-Urstad M. T. Early atherosclerosis is retarded by improved long-term blood glucose control in patients with IDDM. Diabetes. 1996 Sep;45(9):1253–1258. doi: 10.2337/diab.45.9.1253. [DOI] [PubMed] [Google Scholar]
- King G. L., Shiba T., Oliver J., Inoguchi T., Bursell S. E. Cellular and molecular abnormalities in the vascular endothelium of diabetes mellitus. Annu Rev Med. 1994;45:179–188. doi: 10.1146/annurev.med.45.1.179. [DOI] [PubMed] [Google Scholar]
- McLellan A. C., Phillips S. A., Thornalley P. J. The assay of methylglyoxal in biological systems by derivatization with 1,2-diamino-4,5-dimethoxybenzene. Anal Biochem. 1992 Oct;206(1):17–23. doi: 10.1016/s0003-2697(05)80005-3. [DOI] [PubMed] [Google Scholar]
- McLellan A. C., Thornalley P. J., Benn J., Sonksen P. H. Glyoxalase system in clinical diabetes mellitus and correlation with diabetic complications. Clin Sci (Lond) 1994 Jul;87(1):21–29. doi: 10.1042/cs0870021. [DOI] [PubMed] [Google Scholar]
- Murthy N. S., Bakeris T., Kavarana M. J., Hamilton D. S., Lan Y., Creighton D. J. S-(N-aryl-N-hydroxycarbamoyl)glutathione derivatives are tight-binding inhibitors of glyoxalase I and slow substrates for glyoxalase II. J Med Chem. 1994 Jul 8;37(14):2161–2166. doi: 10.1021/jm00040a007. [DOI] [PubMed] [Google Scholar]
- Nacharaju P., Acharya A. S. Amadori rearrangement potential of hemoglobin at its glycation sites is dependent on the three-dimensional structure of protein. Biochemistry. 1992 Dec 22;31(50):12673–12679. doi: 10.1021/bi00165a018. [DOI] [PubMed] [Google Scholar]
- Ohmori S., Iwamoto T. Sensitive determination of D-lactic acid in biological samples by high-performance liquid chromatography. J Chromatogr. 1988 Oct 14;431(2):239–247. doi: 10.1016/s0378-4347(00)83093-5. [DOI] [PubMed] [Google Scholar]
- Oray B., Norton S. J. Glyoxalase I from mouse liver. Methods Enzymol. 1982;90(Pt E):542–546. doi: 10.1016/s0076-6879(82)90182-3. [DOI] [PubMed] [Google Scholar]
- Phillips S. A., Mirrlees D., Thornalley P. J. Modification of the glyoxalase system in streptozotocin-induced diabetic rats. Effect of the aldose reductase inhibitor Statil. Biochem Pharmacol. 1993 Sep 1;46(5):805–811. doi: 10.1016/0006-2952(93)90488-i. [DOI] [PubMed] [Google Scholar]
- Presta M., Maier J. A., Rusnati M., Ragnotti G. Basic fibroblast growth factor is released from endothelial extracellular matrix in a biologically active form. J Cell Physiol. 1989 Jul;140(1):68–74. doi: 10.1002/jcp.1041400109. [DOI] [PubMed] [Google Scholar]
- Ranganathan S., Walsh E. S., Godwin A. K., Tew K. D. Cloning and characterization of human colon glyoxalase-I. J Biol Chem. 1993 Mar 15;268(8):5661–5667. [PubMed] [Google Scholar]
- Southern P. J., Berg P. Transformation of mammalian cells to antibiotic resistance with a bacterial gene under control of the SV40 early region promoter. J Mol Appl Genet. 1982;1(4):327–341. [PubMed] [Google Scholar]
- Starr R. G., Lu B., Federoff H. J. Functional characterization of the rat GAP-43 promoter. Brain Res. 1994 Feb 28;638(1-2):211–220. doi: 10.1016/0006-8993(94)90652-1. [DOI] [PubMed] [Google Scholar]
- Stitt A. W., Chakravarthy U., Archer D. B., Gardiner T. A. Increased endocytosis in retinal vascular endothelial cells grown in high glucose medium is modulated by inhibitors of nonenzymatic glycosylation. Diabetologia. 1995 Nov;38(11):1271–1275. doi: 10.1007/BF00401758. [DOI] [PubMed] [Google Scholar]
- Takahashi M., Lu Y. B., Myint T., Fujii J., Wada Y., Taniguchi N. In vivo glycation of aldehyde reductase, a major 3-deoxyglucosone reducing enzyme: identification of glycation sites. Biochemistry. 1995 Jan 31;34(4):1433–1438. doi: 10.1021/bi00004a038. [DOI] [PubMed] [Google Scholar]
- Thornalley P. J., McLellan A. C., Lo T. W., Benn J., Sönksen P. H. Negative association between erythrocyte reduced glutathione concentration and diabetic complications. Clin Sci (Lond) 1996 Nov;91(5):575–582. doi: 10.1042/cs0910575. [DOI] [PubMed] [Google Scholar]
- Thornalley P. J. Pharmacology of methylglyoxal: formation, modification of proteins and nucleic acids, and enzymatic detoxification--a role in pathogenesis and antiproliferative chemotherapy. Gen Pharmacol. 1996 Jun;27(4):565–573. doi: 10.1016/0306-3623(95)02054-3. [DOI] [PubMed] [Google Scholar]
- Thornalley P. J. The glyoxalase system: new developments towards functional characterization of a metabolic pathway fundamental to biological life. Biochem J. 1990 Jul 1;269(1):1–11. doi: 10.1042/bj2690001. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vander Jagt D. L., Robinson B., Taylor K. K., Hunsaker L. A. Reduction of trioses by NADPH-dependent aldo-keto reductases. Aldose reductase, methylglyoxal, and diabetic complications. J Biol Chem. 1992 Mar 5;267(7):4364–4369. [PubMed] [Google Scholar]
- Vlassara H., Bucala R., Striker L. Pathogenic effects of advanced glycosylation: biochemical, biologic, and clinical implications for diabetes and aging. Lab Invest. 1994 Feb;70(2):138–151. [PubMed] [Google Scholar]
- Wells-Knecht K. J., Lyons T. J., McCance D. R., Thorpe S. R., Feather M. S., Baynes J. W. 3-Deoxyfructose concentrations are increased in human plasma and urine in diabetes. Diabetes. 1994 Sep;43(9):1152–1156. doi: 10.2337/diab.43.9.1152. [DOI] [PubMed] [Google Scholar]
- Wells-Knecht K. J., Zyzak D. V., Litchfield J. E., Thorpe S. R., Baynes J. W. Mechanism of autoxidative glycosylation: identification of glyoxal and arabinose as intermediates in the autoxidative modification of proteins by glucose. Biochemistry. 1995 Mar 21;34(11):3702–3709. doi: 10.1021/bi00011a027. [DOI] [PubMed] [Google Scholar]
- Wells-Knecht M. C., Thorpe S. R., Baynes J. W. Pathways of formation of glycoxidation products during glycation of collagen. Biochemistry. 1995 Nov 21;34(46):15134–15141. doi: 10.1021/bi00046a020. [DOI] [PubMed] [Google Scholar]
- Westwood M. E., McLellan A. C., Thornalley P. J. Receptor-mediated endocytic uptake of methylglyoxal-modified serum albumin. Competition with advanced glycation end product-modified serum albumin at the advanced glycation end product receptor. J Biol Chem. 1994 Dec 23;269(51):32293–32298. [PubMed] [Google Scholar]
- Westwood M. E., Thornalley P. J. Molecular characteristics of methylglyoxal-modified bovine and human serum albumins. Comparison with glucose-derived advanced glycation endproduct-modified serum albumins. J Protein Chem. 1995 Jul;14(5):359–372. doi: 10.1007/BF01886793. [DOI] [PubMed] [Google Scholar]
- Williamson J. R., Chang K., Frangos M., Hasan K. S., Ido Y., Kawamura T., Nyengaard J. R., van den Enden M., Kilo C., Tilton R. G. Hyperglycemic pseudohypoxia and diabetic complications. Diabetes. 1993 Jun;42(6):801–813. doi: 10.2337/diab.42.6.801. [DOI] [PubMed] [Google Scholar]
- Yamada H., Miyata S., Igaki N., Yatabe H., Miyauchi Y., Ohara T., Sakai M., Shoda H., Oimomi M., Kasuga M. Increase in 3-deoxyglucosone levels in diabetic rat plasma. Specific in vivo determination of intermediate in advanced Maillard reaction. J Biol Chem. 1994 Aug 12;269(32):20275–20280. [PubMed] [Google Scholar]