Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1998 Mar 1;101(5):1175–1183. doi: 10.1172/JCI1744

Biological effects of targeted inactivation of hepatocyte growth factor-like protein in mice.

J A Bezerra 1, T L Carrick 1, J L Degen 1, D Witte 1, S J Degen 1
PMCID: PMC508670  PMID: 9486989

Abstract

Hepatocyte growth factor-like protein (HGFL) is a liver-derived serum glycoprotein involved in cell proliferation and differentiation, and is proposed to have a fundamental role in embryogenesis, fertility, hematopoiesis, macrophage activation, and tissue repair. To assess the in vivo effects of total loss of HGFL, we generated mice with targeted disruption of the gene resulting in loss of the protein. Disruption of the HGFL gene allowed for normal embryogenesis, and followed a Mendelian pattern of genetic transmission. Mice homozygous for the targeted allele (HGFL-/- mice) are fertile, and grow to adulthood without obvious phenotypic abnormalities in unchallenged animals, except for development of lipid-containing cytoplasmic vacuoles in hepatocytes throughout the liver lobules. These histologic changes are not accompanied by discernible changes in synthetic or excretory hepatic functions. Hematopoiesis appears unaltered, and although macrophage activation is delayed in the absence of HGFL, migration to the peritoneal cavity upon challenge with thioglycollate was similar in HGFL-/- and wild-type mice. Challenged with incision to skin, HGFL-/- mice display normal wound healing. These data demonstrate that HGFL is not essential for embryogenesis, fertility, or wound healing. HGFL-deficient mice will provide a valuable means to assess the role of HGFL in hepatic and systemic responses to inflammatory and infectious stimuli in vivo.

Full Text

The Full Text of this article is available as a PDF (886.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Banu N., Price D. J., London R., Deng B., Mark M., Godowski P. J., Avraham H. Modulation of megakaryocytopoiesis by human macrophage-stimulating protein, the ligand for the RON receptor. J Immunol. 1996 Apr 15;156(8):2933–2940. [PubMed] [Google Scholar]
  2. Bardelli A., Ponzetto C., Comoglio P. M. Identification of functional domains in the hepatocyte growth factor and its receptor by molecular engineering. J Biotechnol. 1994 Sep 30;37(2):109–122. doi: 10.1016/0168-1656(94)90002-7. [DOI] [PubMed] [Google Scholar]
  3. Bezerra J. A., Han S., Danton M. J., Degen S. J. Are hepatocyte growth factor-like protein and macrophage stimulating protein the same protein? Protein Sci. 1993 Apr;2(4):666–668. doi: 10.1002/pro.5560020416. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bezerra J. A., Witte D. P., Aronow B. J., Degen S. J. Hepatocyte-specific expression of the mouse hepatocyte growth factor-like protein. Hepatology. 1993 Aug;18(2):394–399. [PubMed] [Google Scholar]
  5. Boros P., Miller C. M. Hepatocyte growth factor: a multifunctional cytokine. Lancet. 1995 Feb 4;345(8945):293–295. doi: 10.1016/s0140-6736(95)90279-1. [DOI] [PubMed] [Google Scholar]
  6. Bugge T. H., Flick M. J., Daugherty C. C., Degen J. L. Plasminogen deficiency causes severe thrombosis but is compatible with development and reproduction. Genes Dev. 1995 Apr 1;9(7):794–807. doi: 10.1101/gad.9.7.794. [DOI] [PubMed] [Google Scholar]
  7. Collesi C., Santoro M. M., Gaudino G., Comoglio P. M. A splicing variant of the RON transcript induces constitutive tyrosine kinase activity and an invasive phenotype. Mol Cell Biol. 1996 Oct;16(10):5518–5526. doi: 10.1128/mcb.16.10.5518. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Degen S. J., Stuart L. A., Han S., Jamison C. S. Characterization of the mouse cDNA and gene coding for a hepatocyte growth factor-like protein: expression during development. Biochemistry. 1991 Oct 8;30(40):9781–9791. doi: 10.1021/bi00104a030. [DOI] [PubMed] [Google Scholar]
  9. Gaudino G., Follenzi A., Naldini L., Collesi C., Santoro M., Gallo K. A., Godowski P. J., Comoglio P. M. RON is a heterodimeric tyrosine kinase receptor activated by the HGF homologue MSP. EMBO J. 1994 Aug 1;13(15):3524–3532. doi: 10.1002/j.1460-2075.1994.tb06659.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Han S., Stuart L. A., Degen S. J. Characterization of the DNF15S2 locus on human chromosome 3: identification of a gene coding for four kringle domains with homology to hepatocyte growth factor. Biochemistry. 1991 Oct 8;30(40):9768–9780. doi: 10.1021/bi00104a029. [DOI] [PubMed] [Google Scholar]
  11. Hooper M., Hardy K., Handyside A., Hunter S., Monk M. HPRT-deficient (Lesch-Nyhan) mouse embryos derived from germline colonization by cultured cells. Nature. 1987 Mar 19;326(6110):292–295. doi: 10.1038/326292a0. [DOI] [PubMed] [Google Scholar]
  12. Kurihara N., Iwama A., Tatsumi J., Ikeda K., Suda T. Macrophage-stimulating protein activates STK receptor tyrosine kinase on osteoclasts and facilitates bone resorption by osteoclast-like cells. Blood. 1996 May 1;87(9):3704–3710. [PubMed] [Google Scholar]
  13. Leonard E. J., Skeel A. A serum protein that stimulates macrophage movement, chemotaxis and spreading. Exp Cell Res. 1976 Oct 15;102(2):434–438. doi: 10.1016/0014-4827(76)90065-3. [DOI] [PubMed] [Google Scholar]
  14. Li H., Witte D. P., Branford W. W., Aronow B. J., Weinstein M., Kaur S., Wert S., Singh G., Schreiner C. M., Whitsett J. A. Gsh-4 encodes a LIM-type homeodomain, is expressed in the developing central nervous system and is required for early postnatal survival. EMBO J. 1994 Jun 15;13(12):2876–2885. doi: 10.1002/j.1460-2075.1994.tb06582.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Mansour S. L., Thomas K. R., Capecchi M. R. Disruption of the proto-oncogene int-2 in mouse embryo-derived stem cells: a general strategy for targeting mutations to non-selectable genes. Nature. 1988 Nov 24;336(6197):348–352. doi: 10.1038/336348a0. [DOI] [PubMed] [Google Scholar]
  16. Martin P. Wound healing--aiming for perfect skin regeneration. Science. 1997 Apr 4;276(5309):75–81. doi: 10.1126/science.276.5309.75. [DOI] [PubMed] [Google Scholar]
  17. Medico E., Mongiovi A. M., Huff J., Jelinek M. A., Follenzi A., Gaudino G., Parsons J. T., Comoglio P. M. The tyrosine kinase receptors Ron and Sea control "scattering" and morphogenesis of liver progenitor cells in vitro. Mol Biol Cell. 1996 Apr;7(4):495–504. doi: 10.1091/mbc.7.4.495. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Michalopoulos G. K., Zarnegav R. Hepatocyte growth factor. Hepatology. 1992 Jan;15(1):149–155. doi: 10.1002/hep.1840150125. [DOI] [PubMed] [Google Scholar]
  19. Miettinen P. J., Berger J. E., Meneses J., Phung Y., Pedersen R. A., Werb Z., Derynck R. Epithelial immaturity and multiorgan failure in mice lacking epidermal growth factor receptor. Nature. 1995 Jul 27;376(6538):337–341. doi: 10.1038/376337a0. [DOI] [PubMed] [Google Scholar]
  20. Murthy S. N., Cooper H. S., Shim H., Shah R. S., Ibrahim S. A., Sedergran D. J. Treatment of dextran sulfate sodium-induced murine colitis by intracolonic cyclosporin. Dig Dis Sci. 1993 Sep;38(9):1722–1734. doi: 10.1007/BF01303184. [DOI] [PubMed] [Google Scholar]
  21. Nowak M. A., Boerlijst M. C., Cooke J., Smith J. M. Evolution of genetic redundancy. Nature. 1997 Jul 10;388(6638):167–171. doi: 10.1038/40618. [DOI] [PubMed] [Google Scholar]
  22. Ohshiro K., Iwama A., Matsuno K., Ezaki T., Sakamoto O., Hamaguchi I., Takasu N., Suda T. Molecular cloning of rat macrophage-stimulating protein and its involvement in the male reproductive system. Biochem Biophys Res Commun. 1996 Oct 3;227(1):273–280. doi: 10.1006/bbrc.1996.1500. [DOI] [PubMed] [Google Scholar]
  23. Okayasu I., Hatakeyama S., Yamada M., Ohkusa T., Inagaki Y., Nakaya R. A novel method in the induction of reliable experimental acute and chronic ulcerative colitis in mice. Gastroenterology. 1990 Mar;98(3):694–702. doi: 10.1016/0016-5085(90)90290-h. [DOI] [PubMed] [Google Scholar]
  24. Ponzetto C., Bardelli A., Zhen Z., Maina F., dalla Zonca P., Giordano S., Graziani A., Panayotou G., Comoglio P. M. A multifunctional docking site mediates signaling and transformation by the hepatocyte growth factor/scatter factor receptor family. Cell. 1994 Apr 22;77(2):261–271. doi: 10.1016/0092-8674(94)90318-2. [DOI] [PubMed] [Google Scholar]
  25. Quantin B., Schuhbaur B., Gesnel M. C., Doll'e P., Breathnach R. Restricted expression of the ron gene encoding the macrophage stimulating protein receptor during mouse development. Dev Dyn. 1995 Dec;204(4):383–390. doi: 10.1002/aja.1002040405. [DOI] [PubMed] [Google Scholar]
  26. Reid L. H., Gregg R. G., Smithies O., Koller B. H. Regulatory elements in the introns of the human HPRT gene are necessary for its expression in embryonic stem cells. Proc Natl Acad Sci U S A. 1990 Jun;87(11):4299–4303. doi: 10.1073/pnas.87.11.4299. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Schmidt C., Bladt F., Goedecke S., Brinkmann V., Zschiesche W., Sharpe M., Gherardi E., Birchmeier C. Scatter factor/hepatocyte growth factor is essential for liver development. Nature. 1995 Feb 23;373(6516):699–702. doi: 10.1038/373699a0. [DOI] [PubMed] [Google Scholar]
  28. Shimamoto A., Kimura T., Matsumoto K., Nakamura T. Hepatocyte growth factor-like protein is identical to macrophage stimulating protein. FEBS Lett. 1993 Oct 25;333(1-2):61–66. doi: 10.1016/0014-5793(93)80375-5. [DOI] [PubMed] [Google Scholar]
  29. Sibilia M., Wagner E. F. Strain-dependent epithelial defects in mice lacking the EGF receptor. Science. 1995 Jul 14;269(5221):234–238. doi: 10.1126/science.7618085. [DOI] [PubMed] [Google Scholar]
  30. Skeel A., Leonard E. J. Action and target cell specificity of human macrophage-stimulating protein (MSP). J Immunol. 1994 May 1;152(9):4618–4623. [PubMed] [Google Scholar]
  31. Skeel A., Yoshimura T., Showalter S. D., Tanaka S., Appella E., Leonard E. J. Macrophage stimulating protein: purification, partial amino acid sequence, and cellular activity. J Exp Med. 1991 May 1;173(5):1227–1234. doi: 10.1084/jem.173.5.1227. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Threadgill D. W., Dlugosz A. A., Hansen L. A., Tennenbaum T., Lichti U., Yee D., LaMantia C., Mourton T., Herrup K., Harris R. C. Targeted disruption of mouse EGF receptor: effect of genetic background on mutant phenotype. Science. 1995 Jul 14;269(5221):230–234. doi: 10.1126/science.7618084. [DOI] [PubMed] [Google Scholar]
  33. Uehara Y., Minowa O., Mori C., Shiota K., Kuno J., Noda T., Kitamura N. Placental defect and embryonic lethality in mice lacking hepatocyte growth factor/scatter factor. Nature. 1995 Feb 23;373(6516):702–705. doi: 10.1038/373702a0. [DOI] [PubMed] [Google Scholar]
  34. Waltz S. E., Toms C. L., McDowell S. A., Clay L. A., Muraoka R. S., Air E. L., Sun W. Y., Thomas M. B., Degen S. J. Characterization of the mouse Ron/Stk receptor tyrosine kinase gene. Oncogene. 1998 Jan 8;16(1):27–42. doi: 10.1038/sj.onc.1201508. [DOI] [PubMed] [Google Scholar]
  35. Wang M. H., Cox G. W., Yoshimura T., Sheffler L. A., Skeel A., Leonard E. J. Macrophage-stimulating protein inhibits induction of nitric oxide production by endotoxin- or cytokine-stimulated mouse macrophages. J Biol Chem. 1994 May 13;269(19):14027–14031. [PubMed] [Google Scholar]
  36. Wang M. H., Dlugosz A. A., Sun Y., Suda T., Skeel A., Leonard E. J. Macrophage-stimulating protein induces proliferation and migration of murine keratinocytes. Exp Cell Res. 1996 Jul 10;226(1):39–46. doi: 10.1006/excr.1996.0200. [DOI] [PubMed] [Google Scholar]
  37. Wang M. H., Gonias S. L., Skeel A., Wolf B. B., Yoshimura T., Leonard E. J. Proteolytic activation of single-chain precursor macrophage-stimulating protein by nerve growth factor-gamma and epidermal growth factor-binding protein, members of the kallikrein family. J Biol Chem. 1994 May 13;269(19):13806–13810. [PubMed] [Google Scholar]
  38. Wang M. H., Iwama A., Skeel A., Suda T., Leonard E. J. The murine stk gene product, a transmembrane protein tyrosine kinase, is a receptor for macrophage-stimulating protein. Proc Natl Acad Sci U S A. 1995 Apr 25;92(9):3933–3937. doi: 10.1073/pnas.92.9.3933. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Wang M. H., Ronsin C., Gesnel M. C., Coupey L., Skeel A., Leonard E. J., Breathnach R. Identification of the ron gene product as the receptor for the human macrophage stimulating protein. Science. 1994 Oct 7;266(5182):117–119. doi: 10.1126/science.7939629. [DOI] [PubMed] [Google Scholar]
  40. Wang M. H., Skeel A., Leonard E. J. Proteolytic cleavage and activation of pro-macrophage-stimulating protein by resident peritoneal macrophage membrane proteases. J Clin Invest. 1996 Feb 1;97(3):720–727. doi: 10.1172/JCI118470. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Wang M. H., Yoshimura T., Skeel A., Leonard E. J. Proteolytic conversion of single chain precursor macrophage-stimulating protein to a biologically active heterodimer by contact enzymes of the coagulation cascade. J Biol Chem. 1994 Feb 4;269(5):3436–3440. [PubMed] [Google Scholar]
  42. Willett C. G., Smith D. I., Shridhar V., Wang M. H., Emanuel R. L., Patidar K., Graham S. A., Zhang F., Hatch V., Sugarbaker D. J. Differential screening of a human chromosome 3 library identifies hepatocyte growth factor-like/macrophage-stimulating protein and its receptor in injured lung. Possible implications for neuroendocrine cell survival. J Clin Invest. 1997 Jun 15;99(12):2979–2991. doi: 10.1172/JCI119493. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Yoshimura T., Yuhki N., Wang M. H., Skeel A., Leonard E. J. Cloning, sequencing, and expression of human macrophage stimulating protein (MSP, MST1) confirms MSP as a member of the family of kringle proteins and locates the MSP gene on chromosome 3. J Biol Chem. 1993 Jul 25;268(21):15461–15468. [PubMed] [Google Scholar]
  44. van der Lugt N., Maandag E. R., te Riele H., Laird P. W., Berns A. A pgk::hprt fusion as a selectable marker for targeting of genes in mouse embryonic stem cells: disruption of the T-cell receptor delta-chain-encoding gene. Gene. 1991 Sep 15;105(2):263–267. doi: 10.1016/0378-1119(91)90161-4. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES